-1-2016-04-18 - Scontent -

-1-2016-04-18 - main -

Content

Softwaretechnik / Software-Engineering

Lecture 1: Introduction

2016-04-18

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

o Software, Engineering, Software Engineering

e Successful Software Development
—e working definition: success
e unsuccessful software development exists

‘(e common reasons for non-success

e Course

o Content

e topic areas

e structure of topic areas

e emphasis: formal methods
e relation to other courses
(e literature

‘e Organisation
e lectures
e tutorials

—(® exam

2/36



~1-2016-04-18 - main -

-1-2016-04-18 - Sieee61012 -

Software, Engineering, Software Engineering

EEE
5td 610.12:1990
Qevilon and redeiguaton of
T )

IEEE Standard Glossary of
ry ing T ol

Spontor
Standards Coordinting Commitice
‘Computer Society of the IEEE.

Approved Septamber 28, 1990
IEEE Standards Board

[Abstract: TEEE Sid 610121090, JEEE Standard Glossary of Safiware Engineering Termimology,
identi ntly in use in the field of Software Engineering. Standard definitions for

ineering; glossary; terminology: defintions; dictionary

1581 as07 007

Copmigh 19801y

‘The Institute of Electrical and Flectronics Engineers
345 East 47th Street, New York, NY 10017, USA|

INTERNATIONAL ISO/IEC/
STANDARD IEEE
24765

Fist editon

an gi ing —
Vocabulary

Ingénierie des systémes et du ogiciel — Vocabulaire.

Reference number
ISOIECIIEEE 24765:2010(E)

IEEE ©10/EC 2010
4 © EEE 2010

Restcions oy,

336

4/36



6-04-18 - S

Software — Computer programs, procedures, and possibly associated documentation

and data pertaining to the operation of a computer system.

See also: application software; support software; system software.

Contrast with: hardware.

Software -

1. all or part of the programs, procedures, rules, and associated documentation of an

information processing system. [...]

2.see 610.12

IEEE 610.12 (1990)

3. program or set of programs used to run a computer. [...]

NOTE: includes firmware, documentation, data, and execution control statements.

Engineering vs. Non-Engineering

gine

1-2016-04-18 - Se

IEEE 24765 (2010)

Mental the existing and artist’'s inspiration,

prerequisite available technical among others
know-how

Deadlines can usually b@ cannot be planned due
with sufficient precision to dependency on

artist’s inspiration

Price oriel st, determined by market
thu§alculable value, not by cost

Norms and exist, are known, and are rare and, if known,

standards are usually respected not respected

Evaluation and

e conducted us

is only possible

comparison bjective, quantified subjectively,
iteria results are disputed
Author remains anonymous, considers the artwork as

often lacks emotional
ties to the product

part of him/herself

Warranty and
liability

are clearly regulated,
cannot be excluded

are not defined and in
practice hardly
enforceable

(Ludewig and Lichter, 2013)

5/36

6/36



Software Engineering

-1-2016-04-18 - Ssweng -

-1-2016-04-18 - Ssweng -

Software Engineering —

(1) The application of a systematic, disciplined, quantifiable approach to the develop-
ment, operation, and maintenance of software; that is, the application of engineering

to software.
(2) The study of approaches as in (1).

Software Engineering -

|IEEE 610.12 (1990)

1. the systematic application of scientific and technological knowledge, methods, and
experience to the design, implementation, testing, and documentation of software.

ISO/IEC/IEEE 24765 (2010)

2. see |[EEE 610.12 (1)

Software Engineering:

Multi-person Development of Multi-version Programs.

Software Engineering - the establishment and use of sound engineering r”'
principles to obtain economically software that is reliable and works effi-
F. L. Bauer (1971)

ciently on real machines.

Software Engineering - (1) The application of a systematic, dis-
ciplined, quantifiable approach to the development, operation,
and maintenance of software; that s, the application of engineer-
ing to software.

(2) The study of approaches as in (1). IEEE 610.12 (1990)

Software Engineering - 1. the systematic application of scientific
and technological knowledge, methods, and experience to the
design, implementation, testing, and documentation of software.

2.see 610.12 (1). ISO/IEC/IEEE 24765 (2010)

Software Engineering: Multi-person Development of Multi-
version Programs. D. L. Parnas (2011)

Software Engineering — the establishment and use of sound en-
gineering principles to obtain economically software that is reli-
able and works efficiently on real machines. F. L. Bauer (1971)

D. L. Parnas (2011)

7736

Bertrand M

Interactive Softwar

Institutions that teach
software are responsible
for producing
professionals who will
build and maintain
systems to the
satisfaction of their
beneficiaries. This
article presents some
ideas on how best to
honor this

responsibility.

Computer

Software
Engineering in
the Academy

here is no universally accepted definition of software engineering.

For some, software engineering is just a glorificd name for pre

ming. If you are a programmer, you might put “softy

on your business card but never “programmer.” Others have higher

expectations. A textbook definition of the term might read something
like this: “the body of methods, tools, and techniques intended to produce qual-
ity software.”

Rather than just emphasizing quality, we could distinguish software engi-
om programming by is industrial nature, leading o another definition:
1 ly I ems intended for use in production envi-
orked on by possibly many people, and

evelopment™ includes manage-

ronments,
possibly und
ment, maintenance, validation, do

David Parnas,' a pioncer in the field, emphasizes the “engincering” part and

tation, and so forch.
advocates a software engincering education firmly rooted in traditional engi-
including courses on materials and the like—and split from computer
¢ way electrical engincering s separate from physics.

ause this article p a broad persp Twon't
seutle on any of these definitions; rather, I'd like to aceept that they are all in
some way valid and retain all the views of software they encompass. In facr, I
ditionally offered

am not gon the *
in many universities but more generally on how to instill software engincering
concerns into an entire software curriculum.

If not everyone agrees on the definition of the discipline, few question its
importance. We might have wished for less embarrassing testimonials of our
work’s socictal relevance than the Y2K scare, but it isstill fresh enough in every-
one’s mind to remind us how much the world has come to rely on software sys-
tems. The institutions that teach software—cither as part of computer scienc
o in a specific software engineering program—are responsible for producing
software professionals who will build and maintain these systems to the satis-
faction of their beneficiaries.

SOFTWARE PROFESSIONALS

Ji y a be happy
with their studics. The Information Technology Association of America estimated
in April 2000 that 850,000 IT jobs would go unfilled in the next 12 months. The
dearth of qualificd personnel i just as perceptible in Europe and Australa. Salarics
are excellent. Project leaders wake up at night worrying about headhunters hir-
ing away some of their best developers—or pondering the latest offers they received
themselves.

0018.9162101510.00 © 2001 lEEE

8/36




-1-2016-04-18 - Ssweng -

Software Engineering — (1) The application of a systematic, dis- Software

ciplined, ifi
and maint
ing to softy

(2) The sty r'“ here is no universally accepted definition of software engineering.

tn tha

here s no universally accepted definition of software enginee
Institutions that teach For some, software engineering is just a glorified name for

rogrammer, vou might put “softw or
ne business cazd bur never “programmer.” Others have higher
ations. A textbook defnition of the term might read something
dy of methods, tools, and techniques intended to produce qual-

software are responsible

for producing
Software Engineering - 1. the systematic application of scientific
and technological knowledge, methods, and experience to the
design, implementation, testing, and documentation of software.

2. see 610.12(1). ISO/IEC/IEEE 24765 (2010)

professionals who will n just emphasizing quality, we could distingnish sofeware engi-

I intain necing from programming by s induserial mature, leading to another definition:
systems to the 5 s nany people, and
satisfaction of their

beneficiaries. This

pioneer in . empl ing” partand
e engineering education firmly sooted in traditional engi-

. neering—including conrses on materials and the like—and split from compurer
article presents some science the way electrical engineering is separate from physics.
. 2 ticls

ide.

of these definitio
lid and retain all
ocusing on the “software engincering conirs
i many universities bt more generally on how to instillsoftware er

Software
version Pre

Iwont |1
settle on any of these definitions; rather, I’d like to accept that they are all in [}
some way valid and retain all the views of software they encompass.

oy
i

Software ngineering - the establishment and use of sound en- in April 20007 that 850,000 IT jobs would go unfilled in the next 12 months. The
n i g " H i i dearth of qualified personnel is just E d Australia. Sal
gineering principles to obtain economically software that is reli O A
able and works efficiently on real machines. F.L Bauer (1971) away their best developers—or pondering the arest
themselves.
Computer o arsons 000 e

8/36

The course’s working definition of Software Engineering

-1-2016-04-18 - Ssweng -

Software Engineering —

(1) The application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software; that is, the applica-
tion of engineering to software.

(2) The study of approaches as in (1). IEEE 610.12 (1990)

Software Engineering — the establishment and use i i
principles to obtair@oftware that idgeliable and works effi-

ciently ol real machines.

7/ I

) ,

scope, cost
quality

936



“software that is reliable and works efficiently” (Bauer, 1971)

<
©
9]

More general: software of (good) quality (cf. ISO/IEC 9126-1:2000 (2000))

process quality

4 accuracy
——_— interoperability

security

maturity
software related quality reliability =———— fault tolerance
recoverability

understandability

——  leamability
? operability

product qual|ty attractiveness

usablllty

__ time behaviour

efficiency E— silisati
resource utilisation

6.1 Functionality

The capability of oftware o _provide analysability

functions which'mee e edsAvhen 4 changeability

the software is used underspecmed conditions, maintainability —— stability

testability
6.1.1 Suitability adaptability
The capability of the software product t ide an " 4 installability
appropriate set of functions foéﬁecified tasks ;d portability ———— o
o T co-existence
user objectives. "
replaceability

“software that is reliable and works efficiently” (Bauer, 1971)

2
2
<}

More general: software of (good) quality (cf. ISO/IEC 9126-1:2000 (2000))

process quality — - suitability

—— accuracy
interoperability

security

functionality

maturity
software related quality — fault tolerance
recoverability
understandability
——  leamability

usablllty = .
T operability
product quallty attractiveness

___ time behaviour
resource utilisation

analysability

maintainability — ¢ ange.a.blllty
——— stability

testability

adaptability

portability 4 installability
——— co-existence

replaceability

10/36

10/36



-1-2016-04-18 - main -

Successful Software Development

When is Software Development Successful ?

-1-2016-04-18 - Sallhappy -

awmel P‘js

[ e
iii

Developer  Customer User

dodap. Vo< fejus perds,
Ak

A software development project is successful
if and only if
developer, customer, and user are happy with the result at the end of the project.

736

12/36



Is Software Development Always Successful?

-1-2016-04-18 - Ssuccess -

SUcCcess

0]
'.‘.lll

Erfolgs- und Misserfolgsfaktoren
bei der Durchfiihrung von Hard- und
Softwareentwicklungsprojekten
in Deutschland

2006

Autoren:

Ralf Buscherméhle
Heike Eekhoff
Bernhard Josko

Report: VSEK/55/D
Version: 11
Datum: 28.09.2006

13736

Some Empirical Findings (Buscherméhle et al. (2006))

0 19999
10,000-99.999 S
77 100,000-499.999 >3-6
" 500,000-999.999 >6-12
B8 >1000000 >12-24
I ot specified oo
budget in € (378 responses) planned duration in months (378 responses)
no
kept
[0 completed 0 early
0 cancelled T e
project completion (378 responses) deadline (368 responses)
a5
T <20%
20-49%
kept 0 50-99%
5 below 0 100-199%
[0 above W >200%
budget (368 responses) deadline missed by (91 responses)

-1-2016-04-18 - Ssuccess -

business critical  mission critical  safety critical

Criticality (378 responses, 30 not spec’)

25-49%
50-74%
75-89%
90-94%
95-99%
100%

main functionality realised (368 responses)

<25%
25-49%
50-74%
75-89%
90-94%
95-99%
100%

secondary functionality realised (368 responses)

14/36



A Closer Look

~1-2016-04-18 - Swrongs -

-1-2016-04-18 - Swrongs -

o Successful:

e Unsuccessful:

Timet:

— Software!

| S
I |

Customer Developer
software contract

Some scenarios:

‘>
software contract
Time ¢:
c)O
®
e T
Customer Developer
software contract
%
®, ®
o
®
O © @ @ ®
X v v v VvV
v X v Vv VvV
vV v X Vv VvV
v v v X Vv
v v v Vv X

Time t:
o

9

Timet' > ¢
i vy @
Developer Customer
software delivery
Timet > t:
i X @
Developer Customer
software delivery
What mightve gone wrong?
15736
Timet > ¢
i@x ,!I
Developer Customer
software delivery
®g @b
= E o
8 s 8
c ==
o G S
= v 2
o T 9
a o <
€ (9

Software Project Management

e.g. misunderstanding of requirements
e.g. non-scalable design

e.g. programming mistake

e.g. wrongly conducted test

e.g. wrong estimates

16/36



1-2016-04-18 - main

Course: Content

Course Content

2016-04-18 - Sccontent

Capturing
Requirements

Design
Implementation

Software Project Management

Code Quality

Assurance

Introduction

Scales, Metrics,
Costs

Development

Process

Requirements
Engineering

Architecture &
Design

Software
Motdelling

Quality Assurance
(Testing, Formal
Verification)
Wrap-Up

L13:
L14:
L15:
T5:
L16:
L17:
L18:
L19:

77.
17
147.
187
217

., Mon
., Thu
., Mon
., Thu
., Mon
., Thu
., Mon
., Thu

., Mon
., Thu
., Mon
., Thu
., Mon
., Thu
., Mon
., Thu
., Mon
., Thu
., Mon
., Thu
., Mon
., Thu
., Mon
., Thu
., Mon
., Thu
., Mon
., Thu

1736

14

18/36



Structure of Topic Areas

tent—

-1-2016-04-18 - Sccon

Example: Requirements Engineering

Vocabulary e.g. consistent,
complete, tacit, etc.

Techniques

informal

|

semi-formal

formal

19/36

Excursion: Informal vs. Formal Techniques

nt -

-1-2016-04-18 - Scconte:

Example: Requirements Engineering, Airbag Controller

Requirement:

Whenever a crash is detected, the airbag has to be fired within 300 ms (+¢).

‘within’ means
between 300 — &
and 300 + ¢

‘within’ means
'<’;50100 ms s
okay, too

Developer A Developer B

VS.

o Fix observables: crashdetected: Time — {0,1} and fireairbag: Time — {0,1}
o Formalise requirement: { <

Vt,t' € Time o crashdetected(t) A airbagfired(t') = ' € [t + 300 — &, ¢ + 300 + €]

— no more misunderstandings, sometimes tools can objectively decide: requirement satisfied yes/no.
20136



ment satisfied yes/no.

= 1,

no more misunderstandings, uire
™ WY g

Structure of Topic Areas

Example: Requirements Engineering

Vocabulary e.g. consistent,
complete, tacit, etc.
In the course: Techniques
Use Cases informal e.g “Whenever a crash...”
Pattern Language eg “Always, if (crash) at¢...”
semi-formal
.. /
Decision Tables ( N\ co Vit € Times. "
Live Sequence Charts \ & v '
———

22/36

-1-2016-04-18 - Sccontent -



Content

-1-2016-04-18 - Scontent -

o Software, Engineering, Software Engineering

o Successful Software Development

o working definition: success
o unsuccessful software development exists

e common reasons for non-success

e Course
e Content

e topic areas

(e literature

‘e Organisation

e lectures
e tutorials

—(® exam

e structure of topic areas
@ emphasis: formal methods
e relation to other courses

23/36

Course Software-Engineering vs. Other Courses

The lecturer points out connections to
other topics areas (e.g. research, praxis).

strongly

Project
Management

Vocabulary

Techniques

informal

iigiii

Requirements Design, SW . Quality
Engineering Modelling Implementation Assurance
Techniques Techniques

informal

-1-2016-04-18 - Srel -

totally “O O 00

agree disagree

2436



Course Software-Engineering vs. Softwarepraktikum

On popular demand,

Zeitplan

the chair for software e R RE T Introduction L 1. 18.4,Mon
engineering agreed o ——> Scales, Metrics, L 2: 214, Thu
) Costs L 3: 254, Mon
on: strong(er) 9 000000 " T 284 Th
coupling between : Development L 4 2.5,Mon
both courses. | o 000000 — | | - 55, Thu
Process L 50 9.5, Mon
.o 000000 L6 125, Thu
8 - 16.5., Mon
e - 19.5., Thu
T 2: 23.5,Mon
o ooooo | | - 26.5, Thu
; Requi L 7: 30.5., Mon
|0 000000 S L8 26, Thu
[0 000000 e - = Engineering Lo 66 Mon
B - cooona T3 96, Thu
L10: 13.6., M
Architecture & L1 166 Tﬁn
Design i 6. Thu
© | ©@ 900000 L12: 20.6., Mon
9 T 4. 236, Thu
e Software L13: 27.6, Mon
| & ORI Mondelling L14: 30.6. Thu
L15: 4.7, Mon
v |0 000000 = ﬁ ,
210 000000 T5 77, Thu
»| @ 000000 L16: 117, Mon
] L17: 147, Thu
3 2|0 000000, L18: 18.7,Mon
® E Wrap-Up L19: 217, Thu
B 25736
Literature
LU W |
Software
Project Requirements Design, SW Quality En, ineering
Management Engineering Modelling Assurance
Vocabulary Vocabulary Vocabulary
Techniques Techniques Techniques
informal informal informal
formal formal formal
Software Software Softate
Engineering 1 Engineering 2 Engineering3
¢ ...more on the course homepage.

26736



-1-2016-04-18 - main -

~1-2016-04-18 - main -

Any Questions So Far?

Course: Organisation

2736

2836



Organisation: Lectures

-1-2016-04-18 - Sorgalec -

o Homepage: http://swt.informatik.uni-freiburg.de/teaching/SS2016/swtvl

o Course language: English (since we are in an even year)
o Script/Media:

o slides without annotations on homepage with beginning of lecture the latest

o slides with anngtations on homepage typically soon after the lecture

o recording on ILIAS (stream and download) with max. 2 days delay (cf. link on homepage)

o Schedule: topic areas a three 90 min. lectures, one 90 min. tutorial (with exceptions)

e Interaction: absence often moaned; but it takes two, so please ask/comment immediately.

e Questions/comments:

o “online”: askimmediately or in the break

o “offline” (i) try to solve yourself
(i) discuss with colleagues

(iii)  a) Exercises: ILIAS (group) forum, contact tutor
b) Everything else: contact lecturer (cf. homepage)
or just drop by: Building 52, Room 00-020

o Break: well have a 5-10 min. break
in the middle of each lecture (from now on),
unless a majority objects

15:45

15:00

Organisation: Exercises & Tutorials

1-2016-04-18 - Sorgatut

o Schedule/Submission:
o exercises online (homepage and ILIAS) with first lecture of a block,

° 24h before tutorial
(usually Wednesday, 12:00, local time),

. right before tutorial
(usually Thursday, 12:00, local time).

o please submit electronically via ILIAS; paper submissions are tolerated

o should work in teams of approx. 3, clearly give names on submission

o Grading system: “most complicated grading system ever”

o Admission points (good-will rating, upper bound)

(“reasonable grading given student’s knowledge tutorial”)
o Exam-like points (evil rating, lower bound)

(“reasonable grading given student’s knowledge tutorial”)

A—O‘%bonus for early submission.
2%
o Tutorial: Three groups (central assignment), hosted by tutor.

o Starting from discussion of the early submissions (anonymous),
develop one good proposal together,

o tutorial notes provided via ILIAS.

”I 15:55

1415

VS.

1510
15:00

E(IP sIntroduction

cales, Metrics,
)_’ Costs

Development

Process

Requirements
Engineering

Architecture &
Design

Software
Mondelling

Quality Assurance
(Testing, Formal
Verification)
Wrap-Up

1415

184,

254,
: 284,
25,
55,
95,
125,
16.5.,
19.5,
: 235,
265,
., Mon
., Thu
., Mon
., Thu
., Mon
., Thu
., Mon
., Thu
., Mon
., Thu
., Mon
., Thu
., Mon
., Thu
., Mon
., Thu

2936

Mon
Thu
Mon
Thu
Mon
Thu
Mon
Thu
Mon
Thu
Mon
Thu

3036



Organisation: Exam

-1-2016-04-18 - Sorgaexam -

o Exam Admission:

Achieving 50% of the regular admission points in total
is sufficient for admission to exam.

20 regular admission points on exercise sheets 1-6, and
10 regular admission points on sheets O and 7

— 120 regular admission points for 100%.

Exam Form:

o written exam

o date, time, place: tba
o permitted exam aids: one A4 paper (max. 21x 29.7 x 1 mm) of notes, max. two sides inscribed

e scores from the exercises do not contribute to the final grade.

o example exam available on ILIAS

3136

One Last Word on The Exercises. . .

good-will rating

quality of submission

@e improv@ls in scientific | have improved my skills in scientific
problefTsolving. problem solving.

totally O O O O x strongly totally “ O O O O stongly

agree disagree agree disagree

o Every exercise task is a tiny little scientific work!

o Basic rule for high quality submissions:
o rephrase the task in your own words,

e state your solution,
o convince your tutor of (at best: prove) the correctness of your solution.

32/36



Tell Them What You’ve Told Them. . .

-1-2016-04-18 - Sttwytt -

~1-2016-04-18 - main -

o Basic vocabulary:

o software, engineering, software engineering,
o customer, developer, user,
o successful software development

— in many cases, definitions are neither formal nor universally agreed
S — T —— . A —

o (Fun) fact: software development is not always successful

o Basic activities of software engineering:
o gather requirements,
o design,
o implementation,
o quality assurance,
o project management
— motivates content of the course
o Formal (vs. informal) methods
o avoid misunderstandings,
€ objective, tool-based assessme
é humans are at the heart of so@

o Course content and organisation

Any (More) Questions?

3336

3436



-1-2016-04-18 - main -

References

35/36

References

~1-2016-04-18 - main -

Bauer, F. L. (1971). Software engineering. In IFIP Congress (1), pages 530-538.

Buschermohle, R., Eekhoff, H., and Josko, B. (2006). success - Erfolgs- und Misserfolgsfaktoren bei der
Durchfiihrung von Hard- und Softwareentwicklungsprojekten in Deutschland. Technical Report VSEK/55/D.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.

ISO/IEC FDIS (2000). Information technology - Software product quality - Part 1: Quality model. 9126-1:2000(E).
ISO/IEC/IEEE (2010). Systems and software engineering - Vocabulary. 24765:2010(E).

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Parnas, D. L. (2011). Software engineering: Multi-person development of multi-version programs. In Jones, C. B.
et al, editors, Dependable and Historic Computing, volume 6875 of LNCS, pages 413-427. Springer.

36/36



