Softwaretechnik / Software-Engineering

Lecture 8: Use Cases and Scenarios
2016-06-02

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Scenarios

Topic Area Requirements Engineering: Content

VL6 e Introduction
Requirements Spe

[to Desired Properties

{~te Kinds of Requirements
Lo Analysis Techniques

* Documents

L. Dictionary, Specification
Specification Languages
[ie Natural Language

VL7 |- Decision Tables

W. Syntax, Semantics
© Completeness, Consistency,

VL8 e Scenarios
© User Stories, Use Cases
 Live Sequence Charts
VL9 Lo syntax,Semantics

 Working Def

n: Software

iscussion

Recall: The Crux of Requirements Engineering

- o)

nH(lxow ooafr»\
il - 14 -
Gotrer o ot Do
i .-

One quite effective approach:
try to approximate the requirements with positive and negative scenarios.
« Dear customer. please describe example usages of the desired system.

Customerintuition: “If the system is not at all able to do this, then it's not what | want.

» Dear customer, please describe behaviour that the desired system must not show.

Customer intuition: “If the system does this, then it’s not what | want.

From there on, refine and generalise:
what about exceptional cases? what about corner-cases? etc.

« Prominent early advocate: OOSE (Jacobson, 1992).

Content

o User Stories
Use Cases
Lie Use Case Diagrams

.# Sequence Diagrams

A Brief History
Live Sequence Charts

Syntax
Lo Eements.Locations

‘Semantics:

 infom
 Automaton Construction

Example: Vending Machine

« Positive scenario: Buy a Softdrink
Insert one 1 euro coin.

Press the 'softdrink button.

Get a softdrink.

OLDENBURG

=
=
=
=
=
B

« Positive scenario: Get Change

Insert one 50 cent and one 1 euro coin.
Press the ‘softdrink button.

Geta softdrink.

Get 50 cent change.

« Negative scenario: A Drink for Free
Insert one 1 euro coin.

Press the ‘softdrink’ button.

Do not insert any more money.
(iv) Get two softdrinks.

Notations for Scenarios

The idea of scenarios (sometimes without negative or anti-scenarios)
(re-)occurs in many process models or software development approaches.

In the following, we will discuss two-and-a-half notations
(in increasing formality):

 User Stories (part of Extreme Programming)

« Use Cases and Use Case Diagrams (OOSE)

« Sequence Diagrams (here: Live Sequence Charts (Damm and Harel, 2001))

Natural Language Patterns

Natural language requirements can be (tried to be) written as an instance of
the pattern “(4) (B) (C) (D) (E) (F)." (German grammar) where

clarifies when and under what conditions the activiy takes place
B is MUST (obligation), SHOULD (wish), or WILL intention);
also: MUST NOT (forbidden)
G iseither "the system" or the concrete name of a sub-Jsystem
D oneof three possiilties

« “does description of a system activity.
« “offers description of
« “isableif’

&

extensions,in paticular an object

-

the actual process word (what happens)

(Rupp and die SOPHISTen, 2009)

Example:

After office hours (= A), the system (= C) should (= B) offer to the operator (= D)
abackup (= F') ofall new registrations to an external medium (= £).

A5 arole] | want sometning] 50 that [benefit].

sk | | realeffort

User Stories

User Stories: Discussion

x ST %

x X x

easy to create, small units
close contact to customer
objective / testable: by

g test cases early

may get difficult to keep overvi ystem to by
— maybe best suited for changes / extensions (after first iteration).
not designed to cover non-functional requirements and restr

agile spirit: strong dependency on competent developers

estimation of effort may be difficult

(Balzert, 2009)

10747

User Stories (Beck, 1999)

User Story is a concise, written description of a piece of functionality
that will be valuable to a user (or owner) of the software.

Per user story, use one file card with the user story, e.g. following the pattern:

As a [role] | want [something] so that [benefif.

and in addition:

« unique idetifier (e.g unique number) « back side of file card

« priority (from 1 (highest) to 10 (lowest)) (acceptance) test case(s).
assigned by customer, i.e, how to tell whether the

o effort, estimated by developers, user story has been realised

Proposed card layout (front side):

priorty | unique identifier.name | estimation

As afole] | want [something] so that [benefit].

Tisk realeffort

Use Cases

a7

War

Ivar Jacobson
I ... o Pk e
o _—
COMPUTER LANGUGE Productndty Aard Wivor
b sl

Object-Oriented
Software
Engineering

AUse Case Driven Approach

rSpre—

Use Case Diagrams

124

1504

Use Case: Definition

use case - A sequence of interactions between an actor (or actors) and a system trig-
gered by a specific actor, which produces a result for an actor. (lacobson, 1992)

More precisely:

« Ause case has participants: Ause case s triggered by a stimulus
the system and at least one actor. as input by the main actor.
« Actor: an actor represents Ause case is goal oriented, ie. the main actor
what interacts with the system. wants to reach a particular goal.
 Anactoris arole, which a user or an external * Ause case describes all interactions between
system may assume when interacting with the system and the ipating actors
the system under design. that are needed to achieve the goal

+ Actors are not part of the system. (or fail to achieve the goal for reasons).

thus they are not described in de

+ Ause case ends when the desired goal
 Actions of actors are non-determ achieved, or when it is clear that the desired
(possibly constrained by domain model) goal cannot be achieved.

13747
Use Case Diagrams: Basic Building Blocks
dcAor \un ase
o G
(use case name)
{actor name)

ackoc forhcipades

i use ase
H 16767

Use Case Example

S Geldautomat S

Authentication

the client wants access to the ATM
0| the ATMis operational, the welcome

screen i displayed, card and PIN of

client are available

| clientaccepted.

services of ATM are offered

‘access denied, card returned or
U1 | withheld, welcome screen displayed
actors client (main actor). bank system
open questions
normal case 1. clientinserts card

(2)ATM read card,
‘sends data to bank system
bank system checks validity

EOEEI card readable, but not ATM
card

4. ATM shows PIN screen
5. client enters PIN PSL= VTl no connection to bank system
6. ATM reads PIN, card not valid or disabled
sends to bank system T —
7 vonkoymemte CTTW et |

8. ATM accepts and shows main menu O client doesn't react within 5

o connection to bank system

creptoncase [EETIEEE TS| firstor second PIN wrong

_ 2a1 ATM displays “card not readable” COCCYN thirdPiNwong |
222 ATM retums card (Ludewig and Lichter, 2013; V-Modell XT, 2006)
223 ATM shows welcome screen 14/

Example: Use Case Diagram of the ATM Use Case

Use Case Example

17

Example: Use Case Diagram of the ATM Use Case

Authentication
client (main actor) bank system

Use Case Diagram: Bigger Examples

Survey ofUse Cases

~
i

{V-Modell XT, 2006)

Use Case Diagrams: More Building Blocks

— >

{use case name)

(actor name)

More notation:

abede o C D akede

use case A use case A
i i

1 fesends) | (wses) or (incude)

I G T e

use case B use case B

2

abxyzde

7 18747

Content

© User Stories

* Use Cases

71- Use Case Diagrams
« Sequence Diagrams

ABrief History
Live Sequence Charts

Syntax:
Lie Etements. Locations

Semantics:
cuts

Firedsets,
W Info lll
{o Automaton Construction

204

Use Case Diagram: Bigger Examples

ATM

info services

transactions. |_[~—Tasic services
N)

(extend)

G

define stan-
dingorder

(Ludewig and Lichter, 2013)

Sequence Diagrams

19,47

2247

A Brief History of Sequence Diagrams

o Message Sequence Charts,
ITU standardized in different versions (ITU Z:120, st edition:
1993); often accused of lacking a formal semantics.

« Sequence Diagrams of UML1x
(one of three main authors: I. Jacobson)

 SDs of UML 2.x address some issues, yet the standard
exhibits unclarities and even contradictions
(Harel and Maoz, 2007; Stérrle, 2003)

« For the lecture, we consider
Live Sequence Charts (LSCs)

(ITU-T, 201)

(Damm and Harel, 2001; Klose, 2003; Harel and Marelly,
2003), who have a common fragment with UML 2x
SDs (Harel and Maoz, 2007)

LSC Body Building Blocks

simultaneous region

instance line head

] (cold) line segment

(cold) local invariant

(hot) line segment

coregion

instantaneous message

(hot) condition

asynchronous message

Live Sequence Charts: Syntax (Body)

The Plan: A Formal Semantics for a Visual Formalism

concrete syntax
(diagram)

((£,=,~),Z,Msg, Cond, Loclnv, ©)
abstract syntax
(
\

N

>

|

semantics
(Biichi automaton)

LSC Body Building Blocks

(asgncluaons)

2547
LSC Body: Abstract Syntax
Definition. [LSC Body]
Let € be a set of events and C a set of atomic propositions, £ N C = 0.
An LSC body over £ and C is a tuple
(£, =,~), T, Msg, Cond, Loclnv, ©)
where
« Lisafinite, non-empty of locations with
« apartialorder < C £ x £,
+ asymmetric simultaneity relation ~ C £ x £ disjoint with <,ie. < N ~ = 0,
o T={l,...,In}i £ elements of T
o Msg C £ x € x Lisasetof messageswith (I, E, ') € Msgonly if (1,1') € < U~;
message (1, B, I') i d the)y
« Cond C (261 0) x ns
with (L, &) € Condonlyif L ~ I' foralll # I' € L,
o Loclnv C £ x {o, e} x ®(C) x £ x {0, e} isasetof local invariants
with (1,2, 6,1, ') € Loclnv onlyif L < 1', o: exclusive, o: inclusive,
« ©: £ UMsgU Cond U Loclnv — {hot, cold}
277

From Concrete to Abstract Syntax

« locations L,

© SCLXL ~CLXL

o I={I I

o MsgCLXEXL,

s Cond C (2€\0) x (C)

o Loclnv C £ x {o,8} x ®(C) x £ x {o,
© ©: £ UMsgU Cond U Loclnv — {hot, cold}.

2847
Well-Formedness
Bondedness/no floating conditions: (could be relaxed a little if we wanted to)
. i i =
For each location [€ £, if Lis the location of < =
« acondition,ie. 3 (L,$) € Cond : [€ L, or
= *

« alocal invariant, ie. 3 (I

12) € Loclnv : 1 € {l1, 12}, i<

A
then there s a location " simultaneous to [, i.e. I ~ ', which is the location of

« aninstance head, ie. /' is minimal wrt. <, or
« amessage, ie

(L, B l2) € Msg: L€ {lu,

Note: if messages in a chart are cyclic,
then there doesn't exist a partial order
(so such diagrams don't even have an abstract syntax).

304

From Concrete to Abstract Syntax

« locations L,

© XCLXL ~CLXL

o I={h,...,In}.

o MsgCLXEXL,

» Cond C (2€\0) x ®(C)

o Loclnv C £ x {o,8} x ®(C) x £ x {o0,s},
© ©: £LUMsgU CondU Loclnv — {hot, cold}.

2-14,,
bo<ly, &G, Grby <y, bt by G, , -

b~ b, Con oo, O o ket
gy = G Al - 8 Gk el
(e, &,
inmﬁ?rciwi M,\IMME_X
Lohwy = § (€0, 1,85, @) AP old
"

28/47

Tell Them What You've Told Them. ..

« User Stories: simple example of scenarios
o strong point: naming tests is necessary,
o weak point: hard to keep overview; global restrictions.
« Use-Cases:
« interactions between system and actors,
= be sure to elaborate exceptions and comer cases,
« in particular effective with customers lacking technical background.
« Use-Case Diagrams:
« visualise which participants are relevant for which use-case,
o are rather useless without the underlying use-case.
« Sequence Diagrams:
« avisual formalism for interactions, ie.
® precisely defined syntax,

o precisely defined semantics (—+ next lecture).

= Can be used to precisely describe the interactions of a use-case.

Concrete vs. Abstract Syntax

<ha<h2<hg h2=<ha o<l <l2=<l2s lao=<

o Cond = {({l22}.c2 Ac

o Lochnv = {(L1,1,0,e1,

2947

References

References

Balzert, H. (2009). Lehrbuch und
edition.

Engineering. Spektrum, 3rd

Beck, K. (1999). Extreme Programming Explained - Embrace Change. Addison-Wesley.
Damm, W. and Harel, D. (2001). LSCs: Breat
Design, 19(1)45-80.

Harel, D. and Maoz, S. (2007). Assert and negate revisited: Modal semantics for UML sequence diagrams.
Software and System Modeling (SoSyM). To appear. (Early version in SCESM06, 2006, pp. 13-20).

Harel, D. and Marelly, R. (2003). Come, Let’ Play: Scenario-Based Programming Using LSCs and the Play-Engine.
Springer-Verlag

g life into Message Sequence Charts. Formal Methods in System

ITU-T (2011). ITU-T Recommendation .120: Message Sequence Chart (MSC), 5 edition.
Jacobson, . (1992). Object Oriented Software Engineering - A Use Case Driven Approach. ACM Press.

Klose, J. (2003). LSCs: A Graphical Formalism for the Specification of Communication Behavior. PhD thesis, Carl von
Ossietzky Universitt Oldenburg.

Ludewig J. and Lichter, H. (2013). Software Engineering. dpunktverlag, 3. edition.
OMG (2007). Unified modeling language: Superstructure, version 2.1.2. Technical Report formal/07-11-02.

Storrle, H. (2003). Assert, negate and refinement in UML-2 interactions. Technical Report TUM-10323,
Technische Universitat Minchen.

V-Modell XT (2006). V-Modell XT. Version 1.4

47

