Softwaretechnik / Software-Engineering

Lecture 11: Architecture & Design

Content

/

2015-06-16

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitét Freiburg, Germany

Vocabulary

[~ (software) system, component
interface

"o design, architecture

e modul

Principles of (Good) Design
{—e modularity
i~ separation of concerns

e i ion hiding and data enc
Le abstract data types, object orientation
o inf ion hiding / data lation /

etc. by example
< Software Modelling

{~e model
|-t views & viewpoints

e the 4+1 view

L (e model-driven software engineering
« Anoutlook on UML

448

Topic Area Architecture & Design: Content

VL1 e Introduction and Vocabulary
o Principles of Design
modularity
separation of concerns
formation hiding and data encapsulation
(iv) abstract data types, object orientation

« Software Modelling
(i

views and viewpoints, the 41 view
model-driven/-based software engineering
Unified Modelling Language (UML)

vL12 hoo tp
deseabe
implified) object diagrams «kuu:
<) (simplified) object constraint logic (OCL)
VL13 (v) modelling behaviour

a) communicating finite automata
g b) Uppaal query language
) basic state-machines
H\ <_.$ &m:o_:_o%o:zmaazs_ma.méi_:_mm

« Design Patterns

2/48

Introduction

Survey.

: Previous Experience

N Ry f—
B Diptadsiog 10 Sttt Oty e
50
P —

Softwane Enginooring Terminology

6/48

Vocabulary

system- A collection of components organized to accomplish a specific function or
set of functions. \ EEE 1471(2000)

.
'

.
software system- A set of software units and their relations, if they together serve a
common purpose. T

This purpose is in general complex, it usually includes, next to providing one (or more)
executable programs), also the organisation, usage, maintenance, and further devel-
opment (Ludewig and Lichter, 2013)

component- One of the parts that make up a system. A component may be hardware
or software and may be subdivided into other components. IEEE 610.12 (1990)

software component- An architectural entity that
subset of the system ity and/ or data,
(2)restricts access to that subset via an explicitly defined interface, and

(3) has explicitly defined dependencies on its required execution context.

(Taylor et al,, 2010)

s
Once Again, Please
Interface
System — c = ¢ Interface
Software System ————— Software Component
| maybea
Module
e stsad sechues o o syt el e i
e cxtcmaly v properies of tose e anl
e el b popercs o o S
Software Architecture
g of)
Architecture Design
| is described by
H Architectural Description
% 1048

Vocabulary Cont’d

module- (1) A program unit that is discrete and identifiable with respect to compiling,
g with other units, and loading; for example, the input to, or output from an
assembler, compiler, linkage editor, or executive routine.

(2) Alogically separable part of a program. IEEE 610.12 (1990)

module- Asetof as explicitly
permitted by the programmers. A SL component (Ludewig and Lichter, 2013)

interface— A boundary across which two independent entities meet and interact or
‘communicate with each other. (Bachmann et al., 2002)

interface (of component)- The boundary between two communicating components.
The interface of a component provides the services of the component to the com-
ponents environment and/or requires services needed by the component from the
requirement. (Ludewig and Lichter, 2013)

Goals and Relevance of Design

« The structure of something is the set of relations between its parts.

. ing not built from i parts is called

Lol
Design... Grame.
i) structures a system into manageable units (yields software architecture), H
determines the approach for re: the required software, ~ 2.%</
e e BN
provides hierarchical structuring into a manageable number of units 1 .
at each Hierarchy level P
,
'

Oversimplified process model “Design™:

implementation

/a8

Even More Vocabulary

design—

(1) The pr f defining i interfaces, and other charac-

teristics of a system or component.

(2) The result of the process in (1). |EEE 610.12 (1990)
The ization of bodied i

their relationships to each other and to the eqvitonment, and the principles guidingits

n and evolution. |EEE 1471 (2000)

software architecture- The software architecture of a program or computing system
is the structure or f the system which comprise software elements, the ex-

ternally visible properties of those elements, and the relationships among them
(Bass etal., 2003)

architectural description- Almodell- document, product or other artifact - to commu-
nicate and record a systems architecture. An architectural description conveys a set of
yiews each of which depicts the system by describing domain concerns.

(Ells et al., 1996)

EZ]

Content

Vocabulary

(software) system, component

module, interface

e design, architecture .\

Principles of (Good) Design

modularity

I-e separation of concerns

information hiding and data encapsulation
abstract data types, object orientation

f ion hiding / data lation /
etc. by example

Software Modelling

model

views & viewpoints

the 4+1 view

model-driven software engineering
« Anoutlook on UML

12/48

Principles of (Architectural) Design

3.) Information Hiding

« By now, we only discussed the grouping of data and operations.

One should also consider accessibility.

« The “need to know principle” s called information h

g in SW engineering (Parnas, 1972)

iding- A sof
[lLas it le about the mod

a5 ttle as possible

are prevented from using information about the module that

terface specification.

which each
workings, and other modules
not in the module
IEEE 610.12(1990)

o Note: what is hidden is information which other components need not know
(eg. how datas stored and accessed, how operati

In other words: information hiding is about making exp!
‘which data or operations other components may use of this component.

= Advantages / goals:

it for one component

Hidden solutions may be changed without other components noticing,

as long as the visible beha
IOW: other dep:

ur stays the same (e.g. the employed sorting algorithm).

Components can be verified / validated in isolation.

they are not supposed to.

13748

16/48

1.) Modularisation

de

modular decomposition - The process of breaking a system into compo-
d lement of modular program-
ming. |EEE 610.12 (1990)

nents to faci

modularity - The degree to which a system or computer program is com-
posed of discrete components such that a change to one component has
|EEE 610.12(1990)

minimal impact on other components.

» So, modularity is a property of an architecture.
« Goals of modular decompo:

jon:

« The structure of each module should be simple and easily comprehensible.
The implementation of a module should be exchangeable:
information on the implementation of other modules should not be necessary.
The other modules should ot be affected by implementation exchanges.
Modules should be designed such that expected changes
do not require modifications of the module interface.
« Bigger changes should be the result of a set of minor changes.

Aslong as the interface does not change.

it should be possible to test old and new ver

ns of amodule together.

4.) Data Encapsulation

o Similar direction: data encapsulation (examples later)

Do not access data (variables, files, etc)
a component which offers operations to access (read, write, etc) the data.

Real-World Example: Users do not write to bank accounts directly, only bank clerks do.

14/48

rectly where needed, but encapsulate the data in

17118

2.) Separation of Concerns

« Separation of concerns is a fundamental principle in software engineering:

« each component should be responsible for a particular area of tasks,

» components which try to cover
thus hard to understand and maintai

« Criteria for separation/grouping:

o in object oriented design, data and
operations on that data are grouped
into classes,

sometimes, functional aspects
(features) like printing are realised as
separate components,

» separate functional and technical
components,
Example: logical flow of (logical) messages
ina communication protocol (functional)
i vs. exchange of (physical) messages using
a certain technology (technical).

4.) Data Encapsulation

.

ferent task areas tend to be unnecessarily complex,

assign flexible or variable
functionality to own components.
Example: different networking technology
(wireless, etc)

assign functionality which is expected
to need extensions or changes later
to own components

separate system functionality and
interaction

Example: most prominently graphical
user interfaces (GUI).also file input/output

15/48

« Similar direction: data encapsulation (examples later).

» Do not access data (variables, files, etc)

ectly where needed, but encapsulate the data in

a component which offers operations to access (read, write, etc) the data

Real-World Example: Users do not write to bank accounts directly, only bank clerks do.

€77 v

17148

« Similar direc

4.) Data Encapsulation

ata encapsulation (examples later).

= Do not access data (variables, files, etc) directly where needed, but encapsulate the data in
a component which offers operations to access (read, write, etc) the data.

Real-World Example: Users do not write to bank accounts directly, only bank clerks do.

PR S

e Toparors s 50

Irstttrerinhe gt ()t s e o s st

e et

 torator valldiy

P o e
o st (e

17748

Example

@i

information hiding and data encapsulation not enforced,

— negative effects when requirements change,

enforcing information hiding and data encapsulation by modules,
(iv) abstract data types,

(v) object oriented without information hiding and data encapsulation,

(vi) object oriented with information g and data encapsulation.

19748

4.) Data Encapsulation

« Similar direction: data encapsul

n (examples later).

= Do not access data (variables, fles, etc) directly where needed, but encapsulate the data in
a component which offers operations to access (read, write, etc) the data.

Real-World Example: Users do not write to bank accounts directly, only bank clerks do.

ing and data - when enforced technically (examples later) -
usually come at the price of worse efficiency.

« Itis more efficient to read a components data directly
than calling an operation to provide the value: there is an overhead of one operation call.
= Knowing how a component works internally may enable more efficient operation.

Example: if a sequence of data items is stored as a singly-linked list, accessing the data items in
list-order may by icient themin by position
Good modules give usage hints in their documentation (e.g. C++ standard lbrary).

Example: if an implementation stores intermediate results at a certain place, it may be tempting
to “quickly” read that place when the intermediate results is needed in a different context

— maintenance nightmare - If the result is needed in another context,
adda peration explicitly to the interf

Yet with today’s hardware and programming languages, this is hardly an issue any more;
at the time of (Parnas, 1972), it clearly was.

17748
Example: Module ‘List of Names’
o Task: store alist of namesin V of type “list of string”
» Operations: (in interface of the module)
. simimnlu@w
 pre-condition:
N =ng,....ni g1, o1, m € No, VO < j < men <jer njp1
o post-condition:
N =ng, é@:i. M1 15 <oz 1 i mier, N = old(N) otherwise.
e —]
* remove(inti);
o pre-condition: N = ng, ..., ni—1 @) nis1, - im—1.m € No 0 < i < m,
© post-condition: N = no,...,ni_1,nis1,
o get(inti): string; uﬁoQ
o pre-condition: N = ng, ET@ Ristr o Mm1.m € No,0 < i < m,
o post-condition: N = old(N), retval = n;
PSS
L e dump();
- e pre-condition: N = ng, ..., nm_1.m € No,
o post-condition: IV = old(N).
o side-effect: ng, ..., ny,—1 printed to standard outputin this order.
- 2074

A Classification of Modules (Nagl, 1990)

functional modules

« group computations which belong together logically,

« donot have “memory’ or state, that is, behaviour of offered functionality does not depend on prior
program evolution,

« Examples: mathematical functions, transformations

data object modules

« realise encapsulation of data,

+ adatamodule hides kind and structure of data, interface offers operations to manipulate
encapsulated data

« Examples: modul ing global confi data, databases

data type modules

« implement a user-defined data type in form of an abstract data type (ADT)
« allows to create and use as many exemplars of the data type

+ Example: game object

In an object-oriented design,
o classes are data type modules,
« data object modules correspond to classes offering only class methods or singletons (—» later),
o functional modules occur seldom, one example is Javais class Math,
18748

A Possible Implementation: Plain List, no Duplicates

£

<algorithm >
<iostream >
<string >
<vector>

int main()

sert(
sert(
sert(
sert(

Output:

&

insert(std::string n) (

0 std :: vector <std :: string > sertt

1 iterator it = \
n lower_bound (names. begin () 1 e ():

: ot N I D S

5 it e mesend) [it || ginsert(haver”)

© names. insert (it

N
b dump ()

o void removel int i) (
20 names. erase(names.begin() - i

n)

dump ()

i

5 std::string get(
E names []:

access is bypassing
the interface - no
problem, so far

2148

Change Interface: Support Duplicate Names Changed Implementation: Support Duplicates Data Encapsulation + Information Hiding

o Task: in addition, count(n) should tell how many n's we have.

» Operations: (in interface of the module)

o insert(wonEm@,

o pre-condition:
N =ng,. i mig1, e tm1.m € No, Y0 < j < meny <ier g1

1 int main() [
Output: o stdstring get(

insert(

Berger 1

insert(

o post-condition:
post-conditio source

o insert(dump()

© i <per 1 <peo Mit1, N =1, 0 n i1, i, count(n) =1 unt begin() +)
. @u ni forsome 0 < i < m, N = old(N), count(n) = old(count(n)) + 1. t -~ names.begin . dump () remov:
old(count(n)) insert("Mayer" |
n: remove
dump ()

inser

o remove(inti); count.begin () +

(it ~ names. begin (1) 1):

o pre-condition: N = ng, ..., ni—1,ni, 041, .. Am—1,m € No,0 < i < m, i insert(std::string n)

names(2] = "Naumann”

 post-condition:
o if count(ns) = 1N = 1o, i1, Mgty Rmt.
o if count(n;) > 1, N = old(N), count(n;) = old(count(n;)) — 1.

| e get(inti):string and dump();
3 —» unchanged contract i access is bypassing the ;o petesr el D) C
4 2 interface - and corrupts 4 1+ mod_deih_m: “int main () ":
i 3 the data-structure 4 2 mod_deih_m: ‘names’ was not declared in this scope
. 2248 3 2348 % 24718
Data Encapsulation + Information Hiding Abstract Data Type Abstract Data Type
' cstring > header
3 f void* Names.
 Names new_Names();
void dunpl Names names)5
» 3 uotd insert(Names rames, std:string n);
oid remove{ Names rames. int |);
source B stds:string gett Names names :
remove(1) e SOUIEE || L et names :
: Hayer”) + ot emael e
o 7 e, GRS s Tnveri(names)
o 3 Names new_Names) derel pames)2
insert(std::string n) { . “aew implNames:
o) Naumann 1 names[2] = "Naumann";
insert(“Naumam®): St
Wernasen:1
ampl); " Al names |
1 i o
;]
H 2 “void ** used in arithmetic [-Wpointer-arith]

*is not a pointer—to-object type 2548

2 20 - 2574

Abstract Data Type Object Oriented Object Oriented

header
. Names ¢
Names new_Names
. int main() ¢ std s vector cint > count std s vectorcint> counts
14 dumpl. Names names) “td - vecto String > names: St vector cstd - string > names
S Names names + new_Names 1:
insert(Names names. std s string n) . Output: Names Names ()
remove(Names names, int i); . Berger:t : Output: Output:
5 std:sstring get(Names names. ini i) . J— P~
Wernersen :1 Meye
source Neumann 2

Schulz 1

mp(names Berger:1
ump) b 5 Wernersen

remove(names .

7 Berger:1

rames.) o source source
Qomp(names)
+ Berger:1 “
Hayer 1 w
5 Naumann1 ing > iterator
Neumann.
i bound | this snames begin S namesdump ()
removel names. 2) Sch . i names. endl). 1) »

ins Naumann") Wernersen 1

names | = "Naumann"" Tamesnames[2] = "Naumann”

Wernersen:1

umpl(names) names-—sdump namesdump ():

" o,

o

1 - 1
3 i 0 3 Sccess Tsbypassing the
H H interface - and corrupts
i 2548 gL 26/48 g o e begin () 1) the data-structure 2648
Object Oriented + Data Encapsulation / Information Hiding Object Oriented + Data Encapsulation / Information Hiding “Tell Them What You’ve Told Them”
1 <vector > header <vector > header
: <string > include "mod_oo_deih. h" <string > ' “mod_oo_deih. h" (i hiding and data psulation not enforced,
4 class Names [+ main() { s Names (nt main() [" .
N i) — negative effects when requirements change,

Names* names

: Output:
Shring > names; i ector ot Soring » names: B enforcing information hiding and data encapsulation by modules,
Berger 1
H (iv) abstract data types,
)) :
) ; Wemersen:t (v) object oriented without information hiding and data encapsulation,
p—— J— Berger 1

insert(std:string n); (vi) object oriented with information hiding and data encapsulation.

names >removef names remove(1):

P names >insert("Mayer”) remove(int 1 names>insert("Mayer") k .
i) names—»dump)), St string getl g names dump ()
names games(2] = “Naumann”

names remove(2)
names insert ("Naumann" |

Wernersen 1

names —sgump () names scump ()

o o

© In file included from mod_oo_deih_main.cpp:1:0.
2 mod_oo_deih.h: In function ‘int main() ':

© mod_oo_deih.h:9:28: error: 'std ::vector <std:: basic_string <char> > Names::names' is
4+ mod_oo_deih_main. cpp:22:10: error: within this context

27148 a 27118 s 28/48

Content

Vocabulary

i~ (software) system, component

{~» module, interface

e design, architecture

Principles of (Good) Design

e modularity

i~ separation of concerns

[ion hiding and data enc

e abstract data types, object orientation
o ion hiding / data enc lation /
etc. by example

Software Modelling

{~e model

Lo views & viewpoints

e the 4+1 view

iven software engineering
« Anoutlook on UML

e model

29/48

Example: Process Model

From Building Blocks to Process (And Back)

3248

Software Modelling

30s48

Example: Design-Models in Construction Engineering

2. Designmodel

1. Requirements

3. System

« Shallfiton given
piece ofland.

« Bathroom shall
have:a window.

« Costshallbein
budget

Observation (1): Floorplan abstracts from certain system properties, eg. ..

« kind, number, and placement of bricks, « water pipes/wiring, and

o subsystem details (e.g, window style) « wall decoration

—» architects can efficiently work on appropriate level of abstraction
33/48

jon. [Folk] A model is an abstract, formal, mathematical representation or
description of structure or behaviour of a (software) system.

(Glinz, 2008, 425)
A model is a concrete or mental image (Abbild) of something
ora concrete or mental archetype (Vorbild) for something.

Three properties are constituent:

the image attribute (Abbildungsmerkmal), ie. there is an entity
(called original) whose image or archetype the model is,

(ii) the reduction attribute (Verkiirzungsmerkmal), i.e. only those attributes of
the original that are relevant in the modelling context are represented,
attribute,

in a specific context for a specific purpose.

I
Example: Design-Models in Construction Engineering
. 2. Designmodel
1. Requirements — wiudlocs
uwn“m. 3. System
« Shalftongven
peceofand

Observation (2): Floorplan p ines certain system properties, e.g.

« house and room extensions (to scale), « placement of subsystems

« presence/absence of windows and doors, (such as windows).

— find design errors before building the system (e.g.bathroom windows)
: 33/

A Better Analogy is Maybe Regional Planning

34748

Process and Physical View

Example: modern cars

« large number of electronic control units (ECUs) spread all over the car,

« which part of the overall software is running on which ECU?

« which function is used when? Event triggered, time triggered, continuous, etc.?

For, eg. a simple smartphone app, process and physical view may be trivial or determined by
the employed framework (— later) - so no need for (extensive) particular documentation.

3748

Views and Viewpoints

view - A representation of a whole system from the, mmmumﬂ?wa arelated
set of concerns. IEEE 1471 (2000)

wpoint - A specification of the conventions for constructing and using a
view. A pattem or template from which to develop individual views by es-
tablishing the purposes and audience for a view and the techniques for its
creation and analysis.

IEEE 1471 (2000)

« A perspective is determined by concerns and information needs:

team leader, e.g. needs to know which team is working on what component,

operator, e

needs to know which component is running on which host,

developer, e.g. needs to know interfaces of other components.

etc.

Views and Their Representation \

3548

38/48

An Early Proposal: The 4+1 View (

end-user
functonalty

programmers,
software management

(Ludewig and Lichter, 20

system view: how is the system under
development integrated into (or seen by) its
environment; with which other systems
(including users) does it interact how.

static view (~ developer view): components
of the archi the d

system engineer,
opelogy.

dynamic view (~ process view): how and
when are components instantiated and
how do they work together at runtime.

deployment view (~ physical view): how
are component instances mapped onto
i and hardware units.

relations. Possibly: assignment of
development, test, etc. onto teams.

“Purpose of architecture: support functional

Structure vs. Behaviour

« Form of the states in 3 (also actions A):
structure of S

« Computation paths 7 of S:
behaviour of 5

o skit M

paths of the form

T oy Aoy

is called state (or configurati
* @y € A,i € No,is called action (or event).

The (possibly partia) function [] : § - [S] s called
interpretation of S.

ive and reflective i of beh

(Harel, 1997) proposes to di

o constructive:
“constructs [of description] contal

— how things are computed.

o reflective (or assertive):

formation needed
in executing the model or in translating it into executable code

“[description used] to derive and present views of the model, statically or during execution,

orto set on behavior in

for

— what should (or should not) be computed.

Note: No sharp boundaries! (would be too easy...)

39/48

Views and Their Representation

BREaREE

An Outlook to UML

il

40748

4248

Model-Driven Software Engineering

o (Jacobson et al, 1992); “System development is model b
© Model driven software engineering (MDSE): everything is a model.
 Model based software engineering (MBS

g’

;ome models are used.

41748

A Brief History of the Unified Modelling Language (UML)

« Boxes/lines and finite automata are used to visualise software for ages.

© 1970's, Software Crisis™

Modelling languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams
o Mid 1980s: Statecharts (Harel, 1987), StateMate™ (

« Early 1990s, advent of Object-Oriented-Analysis/
~ Inflation of notations and methods, most prormin

o Object-Modeling Technique (OMT)
(Rumbaugh et al, 1990)

4318

Model-Driven Software Engineering

o (Jacobson et al, 1992): “System development is model building”
© Model driven software engineering (MDSE): everything is a model.

= Model based software engineering (MBS

ome models are used.

requirements/
constants

41as
A Brief History of the Unified Modelling Language (UML)
« Boxes/lines and finite automata are used to visualise software for ages.
© 19705, Software Crisis™
~ Idea: lear from engineering disciplines to handle growing complexity.
Modelling languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams
o Mid 1980's: Statecharts (Harel, 1987), StateMate™ (Harel et ., 1990)
« Early 1990's, advent of Object-Oriented-Analysis/Design/Programming
~ Inflation of notations and methods, m=-+ =-===~=+
« Object-Modeling Technique (OMT)
(Rumbaugh et al, 1990)
« Booch Method and Notation
(Booch, 1993)
. 43748

A Brief History of the Unified Modelling Language (UML) A Brief History of the Unified Modelling Language (UML) UML Overview (omG, 2007, 684)

« Boxes/lines and finite automata are used to visualise software for ages. = Boxes/lines and finite automata are used to visualise software for ages.

 1970's, Software Crisis™ © 1970, Software Crisis™
- Idea: learn from engineering disciplines to handle growing complexity. - Idea: learn from engineering disciplines to handle growing complexity.
Modelling languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams Modelling languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

 Mid 1980's: Statecharts (Harel, 1987), StateMate™ (Harel et al, 1990) o Mid1980s: Statecharts (Harel, 1987), StateMate™ (Harel et al, 1990)

« Early 1990's, advent of Object-Oriented-Analysis/Design/Programming o Early 1990's, advent of Object-Oriented-Analysis/Design/Programming
- Inflation of notations and methods, most prominent: - Inflation of notations and methods, most prominent: o
o Obiject-Modeling Techniue (OMT) s case model o Object-Modeling Technique (OMT)

(Rumbaugh et al, 1990)
« Booch Method and Notation
(Booch, 1993)

« Object-Oriented Software (OOSE)
(lacobson etal., 1992)

(Rumbaugh etal, 1990)
« Booch Method and Notation
(Booch, 1993)

« Object-Oriented Software Engineering (OOSE)
(lacobson et al. 1992)

Each “persuasion’” selling books, tools, seminars... [& — . Each “persuasion’” selling books, tools, seminars... . Figure A5 The axanomy fseutureand behaviordagram
. xM\wM ﬁ ~« Late1990's: joint effort of "the three amigos” UML O.xand 1.x i Dobing and Parsons (2006)
G s i eing . Standards published by Object Group (OMG, open 1
we el el i not-for-profit computer Industry consortium”. Much criicsed for lack of formality.
© e Since 2005: UML 2.x, split into infra- and superstructure documents. o
438 434 44718
Topic Area Architecture & Design: Content Tell Them What You've Told Them. ..

VL1 o Introduction and Vocabulary
« Principles of Design
modularity o Principles of (Good) Design:

separation of concerns + modularity, separation of concerns,
i) information hiding and data encapsulation
) abstract data types, object orientation

» Design structures a system into manageable units.

« information hiding / data encapsulation
— References
« Model: a concrete or mental image or archetype with

« Software Modelling

(i) views and viewpoints, the 4+1 view

model-driven/-based software engineering o image attribute,
Unified Modelling Language (UML) o reduction attribute,
vL12 modelling structure « pragmatic attribute,
a) (simplified) class diagrams
b) (simplified) object diagrams here: abstract, formal, mathematical description.
) (simplified) object constraint logic (OCL) . . .
o Software Modelling: views and viewpoints, e.g. 4+1
VL13 (v) modelling behaviour
X a) communicating finite automata » Model-driven Software Engineering
g b) Uppaal query language
©) basic state-machines H o Unified Modelling Language:
VL4 d) an outlook on hierarchical state-machines

« afamily of modelling languages.

« Design Patterns

45/48 a 46/48 s 4748

References

Bachmann, . Bass, L. Clements,P. Garlan, D. Ivers. . Litle. R. Nord, R and Staford. | 2002). Documenting software architecture: Documenting,
interfaces Technical Report 2002-TN-O15, CMU/SE

s, P. and Kazran, R, (2003) nd edit
3). Object-oriented Anlysis and Design with Applications. Prentice-Hall.
(2010} Atale of Germany e 287114-122

Dobing, B and Parsons, | 2006). How UML s used. Communications of the ACM, 49(5}109-14.

F H. Saunders, T F. Poon. P . Rayford, D., Sherlund, 8. and Wade. R L (1996]. Toward a recommended practice for architectural
fon. In ICECCS, pages 408-413. IEEE Computer Society.

Glinz. M (2008 31(5)425-434.

1987) o (31231274,

1997). Sore thoughts on statecharts, 13 yearslater In Grumberg, O, editor, CAV, volume 1254 of LNCS, pages 226-231. Springer-Verlag.
Harel, D, Lachover, H, etal (1990) IEEE Transactions on
Software Engineering, 16(4}403-414

EEE (1990). IEEE. Terminology.

EEE (2000] STt

Jacobson, 1. Chiisterson. M. and | £.(1992) y

Kruchten, P (1995). The “4+1"view model of software architecture. IEEE Software, 12(6/42-50.

Ludevig, |.and Lichter, . (2013). Software Engineering. dpunktverlag, 3. edition.

Nagl. M. (1990). Softwaretechnik: Methodisches Programmieren i Grofien. Springer-Verlag.

OMG (2007). version 212
Pamas D. L (1972). Commun. ACH,

Rumbaugh, . Blaha. M Premertani,W. Eddy. F. and L W.(1990), Prenice Hall
Taylor, R N. Medvidovic, N and Dahofy, E M.(2010). Theory,and Practie.

48/48

