Softwaretechnik / Software-Engineering

Lecture 2: Software Metrics

2016-04-21

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Expectations

« none, because mandatory course
« overall

+ well-structured lectures

(/) praxis oriented

X practical knowleds

v/ improve skills in scientific work
() more about scientific methods
 other courses
X more on how courses are linked together
X skills we need to organise SoPra

v maybe transfer knowledge in SoPra

“real world”

v vocabulary and methods in professional software development
v learn how things work in a company. to easier integrate into
teams, e.g., communication
« kinds of software
v embedded systems and software
X how to combine HW and SW parts

Introduction
Scales, Metics,
Costs

Is Software Development Always Successful? No.

£72 mi2)

Aviane 5,88 Therac-25 Toll Collect
« self-driving car, 2016; h
. i ot g not quantified
« car, 2015 security issue, remote exploit; 14 Mio, cars recalled
. ar, people injured and killed
« photocopier,
« tiltrotor aircraft, 2000; hydraulic failure not handled: 4 killed
. i il 5, 2000; EMV
« plane landing 1993; environment assumptions problem: 2 kiled, 54 injured
« ambulance management, 1992; agement issues, poor 46 killed
« missile defense, 1991, integer overfiow. 28 kiled
« teleph : h no phones, 75 + 100 Mio. $
. 1979; random bits, false
©« weatherballoons, 1971; poor design; 72 weather-ball d data lost

Expectations Cont’d

« software development
v

+ developing, maintaining software at bigger scale
v aspects of software development

« software project management

+/ learn what s important to plan

' how to structure the process of a project

+ howto keep control of project, measure success

X which projects need full-time project manager

X which kind of documentation i really necessary

X want to get better in leading a team: how to lead team of engineers
« costestimation

+/ how to estimate time and effort

(x) formal methods for better planning of projects
X tools which help planning

rays how to judge quality on
+/ avoid mistakes during software development
+ make better programs, or make programs more efficiently

Survey: Previous Experience

o Requirements Engineering o
o o0

Programming

0 Design Modelling o
Desenflodee
2 0

‘Software Quality Assurance

Expectations Cont’d

« requirements
v formal ways to specify requirements
learn techniques to reduce misunderstandings
understand types of requirements
leam how requirements g1 g be stated
how to create requirements/specification document

S3<x

xx x EX o
&

sign

techniques for design

predict potential risks and crucial design errors

come up with good design, learn how to design

practical knowledge on application of design patters

how to structure, compose components, how to define interfaces
standards for keeping parts of project compatible

how to guarantee a particular reliability

« Implementation

() modular programming, better documentation of big projects
more of d progras
h f standards, i pp

improve coding skills
how to increase (software) performance

x x x x

3w

Introduction
Scales, Metrics,
Costs.

Development

Process

Requirements
Engineering.

Architecture &
Design

Expectations Cont’d

« code quality assurance
+/ methods for testing to guarantee high level of quality

) howto
v formal methods like program verification
X learn about practical implementation of these tools

« extrainformation

« “want to work on medical software”
« “want to work in automotive industry”
« “worked as software-engineer”

Content

Software Metrics

|~ Motivation

|4« Vocabulary

[« Requirements on Useful Metrics
[~ Excursion: Scales

|4 Example: LOC

{4 Other Properties of Metrics

|~ Subjective and Pseudo Metrics
\s Discussion

Cost Estimation

{~ Deadlines and Costs
[Experts Estimation
L Algorithmic Estimation

1z

10747

Software Metrics

Topic Area Project Management: Content

VL2 o Software Metrics
= Properties of Metrics
[~ Scales

Lo Bxamples

VL3 & Cost Estimation

i~ Deadlines and Costs
I¢e Experts Estimation
Le Algorithmic Estimation

VL4
Project Management
Fe Project
[e Process and Process Modelling
[Procedure Models
VLS

Lte Process Models

© Process Metrics

L com, Spice
9rar
Engineering vs. Non-Engineering
workshop
(technical product)
Mental the existing and artists inspiration,
prerequisite available technical among others
know-how
Deadines E:E%v@ cannot be planned due
with sufficient precion | to dependency on
artists inspiration
Price orier . determined by market
thu§Glculable value, not by cost
Norms and ‘exist, are known, and are rare and, if known,
standards are usually respected not respected.
) . - fsonly possi
comparison biective, quantified subjectively,
ria results are disputed
Author femains anonymous, considers the artwork as
often lacks emotional part of him/herself
ties to the product
‘Warranty and are clearly regulated, are not defined and in
liability cannot be excluded practice hardly
enforceable
(Ludewig and Lichter, 2013)
6136

Motivation

« Goal: specify, and system:

ally compare and improve industrial products.
» Approach: precisely describe and assess the products (and the process of creation).

» This is common practice for material goods:

« Not o obvious (and common) for i

material goods
It should be common: objective measures are central to engineering approaches.

Software Metrics: Motivation and Goals

Important motivations and goals for using software metrics:
« specify quality requirements

« assess the quality of products and processes

= quantify experience, progress, etc

« predict cost/effort, etc.

« support decisions

Software metrics can be used:
« prescriptive, e
« descriptive, eg.

all prodecures must not have more then ' parameters’ or
rocedure P has N parameters’
A descriptive metric can be

+ diagnostic, e, “the test effort was \ hours’ or

o prognostic, eg, “the expected test effort is ' hours’

Note: prescriptive and prognostic are different things.

» Examples: support decisions by diagnostic measurements:

(i) Measure time spent per procedure, then “opti

most time consuming procedure.

) Measure attributes which indicate architecture problems, then re-factor accordingly.

16747

) “no so obvious” for software
Why b T ?

« Recall, eg, quality (ISO/IEC 9126-12000 (2000)):

process quality ————— suitabilty

—— accunacy
= ineropenbity

security

functionality

maturty
reliabiity mﬂ% tolerance
recoverabilty

understandabilty

product quality atiractiveness

—

eficency =———— time behaviour

A subiiry

testabilty
adaptability

== co-existence
replaceabilty

Requirements on Useful Metrics

Definition. A software metric is a function m : P — S which assigns to each proband
p € Pavaluation yield (‘Bewertung’) m(p) € S. We call § scale.

In order to be useful, a (software) metric should be:

differentiated | worst case: same valuation yield for all probands

comparable ordinal scale, better: rational (or absolute) scale (— in a minute)
reproducible | multiple applications of a metric to the same proband should
yield the same valuation
available valuation yields need to be in place when needed
[relevant wrt. overall needs
economical | worst case: doing the project gives a perfect prognosis of project

duration - at a high price;
irrelevant metrics are not economical (if not available for free)

[>t plausible (— pseudo-metric)

robust developers cannot arbitrarily manipulate the yield:
antonym: subvertible

resource utilsation

Vocabulary

metric - A quantitative measure of the degree to which a system, component, or pro-

See: quality metric. IEEE 61012 (1990)

quality metric —

(1) A quantitative measure of the degree to which an item possesses a given quality
attribute.

(2) A function whose inputs are software data and whose output is a single numerical
value that can be interpreted as the degree to which the software possesses a given
quality attribute. IEEE 610.12(1990)

Excursion: Scales

1547

Scales and Types of Scales

Scales and Types of Scales

Scales § are distinguished by supported operations: Scales S are distinguished by supported operations:

percen- percen-
Zu | i | min | feseg | o | propor | natunl Zu | 22w min | fieseg | o | propor | natural
= transitivity) | max | median tion 0 (zero) = transitivity) max | media tion 0 (zero)
nominalscale v x x x| x| x x nominalscale | v x x x | x| x x
ordinal scale v v v v X X X ordinal scale v v v v X x x
nterval scale Tterval scale
(with units) v v v v v x x (with units) v v v v v 7 * *
vational scale Tational scale
(with units) v v v v v v v (with units) v v v v v 7 v v
absolute scale a rational scale where S comprises the key figures itself absolute scale a rational scale where S comprises the key figures itself
Examples: Nominal Scale
+ nationality, gender, car manufacturer, geographic direction, rain number, .
+ Software engineering example: programming language (5 = {Java,C. ... })
5 Thereis no (natural) order between elements of S: the lexicographic order can be imposed
(“C < Java"), but s not related to the measured information (thus not natural)
1947
Scales and Types of Scales Scales and Types of Scales
Scales are distinguished by supported operations; Scales 5 are distinguished by supported operations:
percen- percen-
_z | S>with | omin | tieseg | o | Propor- | nawral _ | =it win | feseg | o | propor | natual
=% | tanstity) | max | median ton | 0zero) =% | transitvity median ton | 0fzero)
nominalscale v x x x x| * x nominalscale | v x x x | x| x x
ordinalscale v v v v x|« x ordinalscale | v v v v x| x x
interval scale interval scale
(with units) v v v v v x x (with units) v v v v v * *
rational scale rational scale
(with units) v v v v v v v (with units) v v v v v v v
absolute scale a rational scale where S comprises the key figures itself absolute scale a rational scale where S comprises the key figures itself
Examples: Interval Scale Examples: Rational Scale
« temperature in Fahrenheit hing time; weight; pressure: price; speed; distance from Freiburg,
+ “today it 10°F warmer than yesterday” (2 (dxadsy, yestetny) = 1) + Software engineering example: runtime of a program for given inputs.
* “100°F is twice as warm as 50°F™:...7 No. Note: the zero is arbitrarily chosen.
— The (natural) zero induces a meaning for proportion m, /ms.
« Software engineering example: in revision control system
19/ 19,

Scales and Types of Scales

Scales $ are distinguished by supported operations:

percen-
Sy | it | i es.eg | o | Popor | natal
= transitivity) mediany tion 0 (zero)

nominal scale v x x x x x x

ordinal scale v v v v x x x

terval scale

(with units) v v v v v * *

rational scale

(with units) v v v v v v v

absolute scale a rational scale where 5 comprises the key figures itself

Examples: Ordinal Scale

« strongly agree > agree > disagree > strongly disagree; Chancellor > Minister (administrative ranks);

« leaderboard (finishing number tells us that 1st was faster than 2nd, but not how much faster)

« types of scales,
’

example: CMMI y levels 1to 5) (— later)

— There s a (natural) order between elements of M,
but no (natural) notion of distance or average.

Scales and Types of Scales

Scales S are distinguished by supported operations:

percen-
_| <ot | min | feseg | o | propor | nawal
=7 | tansitivity) | max | medias ton | 0zero)

nominal scale v X X X X X X

ordinal scale v v v v x x x

interval scal

sale |, v v v v x x
(with units) v v v A v
absolute scale a rational scale where 5 comprises the key figures itself

Examples: Absolute Scale

« seatsina bus, number of public holidays, number of inhabitants of a country,

« “average number of children per family: 1.203" - what s a 0.203-child?
The absolute scale has been used as arational scale (makes sense for cert
« Software enginee

purposesif done with care).

g example: number of known errors.

— An absolute scale has a me

n, but in general not an average in the scale.

1947

Something for the Mathematicians. . .

Recall:

n. [Metric Space (math.))

Let X beaset. Afunctiond : X x X — Ris called metric on X'

i and only if, for each z, y, z € X,
) d(z,9) >0

) d(z,y) =0 <= a=y

) d(w,y) = d(y,z)

(W) d(z, 2) < d(w,y) + d(y, 2)

(X, d) is called metric space.

— different from all scales discussed before;

(non-negative)
(identity of indiscernibles)
(symmetry)

(triangle inequality)

ametric space requires more than a rational scale.

— definitions of, e.g., IEEE 610.12, may use

standard (math) names for different things

Example: Project Management

m: commits took place at n-th day of project.

Team A:
10,20, 30, 40,50, 60, 70, 80,90, 100

average: 55.5
50 median: 50

'Oh, this SoPra was so stressful...

Team B:
5,50, 60, 75,80, 85, 95, 100

100

75 median: 75

average: 555

Could we have done something about that?”

Median and Box-Plots

ma._:ht).sm uﬁl« RQBN MQ»&*WW

S
Pe OL)

st - .

My [M |
[TOC [127 [213 | 152 | 139 | 13297 |

x « arithmetic average: 2785.6
w(f(T;) o median: 127,139,152, 213, 13297

« aboxplot visualises 5 aspects of data at once

* (whiskers sometimes defined differently, “outliers):
S —
fect)
g 100 % (maximum)
P(Ty UB) %) Py 30000
75% (3rd quartile)
20000
50% (median)
10,000 average: 7.033.027

25% (1st quartile)

0% (minimum) median: 2,078

LOC of 20155 lecture’s * . tex files

m

Requirements on Useful Metrics

In order to be useful, a (software) metric should be:

differentiated | worst case: same valuation yield for all probands

comparable | ordinal scale, better: rational (or absolute) scale

reproducible | multiple applications of 2 metric to the same proband should yield the

Back From Excursion: Scales same valuation
available valuation yields need to be in place when needed
relevant wrt. overall needs
economical | worst case: doing the project gives a perfect prognosis of project duration
- ata high price;

relevant metrics are not economical (if not available for free)

plausible (> pseudo-metr

robust developers cannot arbitrarily manipulate the yield:
antonym: subvertible

22w

Example: Lines of Code (LOC)

dimension

programsize LOCior

[—

number of lines in total

netprogram LOCye
size

number of non-empty lines

code size LOCpars

delivered DLOCio,

programsize DLOChe.
DLOCpurs

number of ines with not
only comments and
non-printable

like LOC, only code
(as source or compiled)
iven to custor

Kinds of Metrics: ISO/IEC 15939:2011

(Ludewig and Lichter, 2013)

base measure - measure defined in terms of an attribute and the method for quanti-

fyingit.

Examples:

« lines of code, hours spent on testing, ...

LDCpws = 7

differentiated

comparable
reproducible
available
relevant

economical

plausible

S SIS NS

robust

2677

1SO/IEC 15939 (201

derived measure — measure that is defined as a function of two or more values of base

measures.

Examples:

+ average/median lines of code,

1SO/IEC 15939 (201

(lines per hour), ...

2947

More Examples

n_“,uhm.n._n_%n positive example negative example
differentiated program lengthin LOC | CMM/CMMI level below 2
comparable cyclomatic complexity | review (text)
memory d d by inspector
available number of developers number of errors in the code
(not only known ones)
relevant expected development | number of subclasses (NOC)
cost; number of errors
economical number of discovered | highly detailed timekeeping
errorsin code
plausible cost estimation cyclomatic complexity of a
following COCOMO program with pointer
(to a certain amount) operations
robust grading by experts almost all pseudo-metrics

(Ludewig and Licht

,2013)

2747 K
Kinds of Metrics: by Measurement Procedure
objective metric pseudo metric subjective metric
Procedure unting, inspector, verbal
poss. normed measurements or or by given scale
assessment)
Advantages exact, reproducible, can directly
be obtained usable statementonnot results, applicable to
automatically directly visible complex characteristics
characteristics
hard hend, quality
ne P i of lts d e
interpretation inspector
Example, body height,air pressure | body mass index (Bl health condition, weather
general weather forecast for condition ("bad weather”)
next day
Example in size in LOC or NCSI; i ofan
Software number of (known) bugs | estimation following. ermor
Engineering COCOMO
Usually used for | collection of simple ictic quality
base measures. estimation): overall weighting
assessments
(Ludewig and Lichter, 2013) H
3047

Other Properties of Metrics

Pseudo-Metrics

28/47

314

Pseudo-Metrics Pseudo-Metrics Example

Some of the most interesting aspects of software development projects Example: produ
are hard or impossible to measure directly. e.g: « Team T develops software S with LOC N = 817in ¢ = 310h.

y (derived).

« how maintainable is the software? « doallmodules do appropriate error handling? o Define productivity as p = N/t, here: ca. 2.64 LOC/h.
« how much effort is needed until completion? « is the documentation sufficient and well pecud i . .
usable? o Pseudo-metric: measure performance, efficiency, quality,

© howis the productivity of my software people? of teams by productivity (as defined above). J
Due to high relevance, people want X
to measure despite the difficultyin o teammaywiite| y insteadof [x 1= y * 23
measuring. Two main approaches: (& o

& 4

—» 5-time productivity increase, but real efficiency actually decreased.
grading w)

Pseudo-metrics, — not (atall) plausible.

derived measures | ¥/

— clearly pseudo,

Note: not every derived measure is a pseudo-metric:
« average LOC per module: derived, not pseudo —» we really measure average LOC per module.
+ measure maintainability in average LOC per module: derived, pseudo
—» we donit really measure maintainability: average-LOC s only interpreted as maintainability.
Not robust if easily subvertible (see exercises).
324 330

McCabe Complexity Cont’d McCabe Complexity Cont’d

Definition. [Cyclomatic Complexity [McCabe, 1976])
Let G = (V, E) be the Control Flow Graph of program P.

Definition. [Cyclomatic Comglexity [McCabe, 1976])
Let G = (V, E) bethe Control Flow Graph of program P.

Then the cyclomatic complexity of P is defined as v(P) = |E| — |V| + p where p s the Then the cyclomatic complexity of P is defined as v(P) = |B| — [V + p where
number of entry or exit points. number of entry or exit points.
Mt nsertionsort (i1 armay) ¢ « Intuition: number of paths, number of decision points.
2 for (int i = 2; i < array.length; i++)
e arayiini v lene « Interval scale (not absolute, no zero due to p > 0);
o | araytor Sime easy to compute
s i WD Y P
(12 0t me ¢ armay(10 ¢ = Somewhat independent from programming language.
arraylj] = array(j
L o Plausibility:
uoL eyl s e + loops and conditions are harder to understand than
Dls sequencing.
— doesn' consider data.
Number of edges: |E| =11 . -
Number of nodes: VI=6+2+2=10 Prescriptive use:

Exteral connections: p = 2
—u(P)=11-10+2=3

“For each procedure, either limit cyclomatic
complexity to [agreed-upon limit] or provide
written explanation of why limit exceeded:”

McCabe Complexity

complexity -
) Th ich a system or has a design or i on thatiis
difficult to understand and verify. Contrast with: simplicity.

(2) Pertaining to any of a set of structure-based metrics that measure the attribute in
. IEEE 610.12(1990)

n. [Cyclomatic Number [graph theory]]
Let G = (V, E) be a graph comprising vertices V and edges E.
The cyclomatic number of G is defined w\ nunbes of edgec

o(G) = |E[- [V|+ 1.

jon: minimum number of edges to be removed to make G cycle free.

References

3547

46/47

References

Basili, V. R and Weiss, D. M. (1984). A
Transactions of Software Engineering, 10(6):728-738.

for collecting valid soft data. IEEE

Chidamber, S. R. and Kemerer, C. F. (1994). A metrics suite for object oriented design. IEEE Transactions on
Software Engineering, 20(6):476-493.

EEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-19900.

1SO/IEC (201). Information technology - Software engineering - Software measurement process. 159392011
ISO/IEC FDIS (2000). Information technology - Software product quality - Part 1: Quality model. 9126-1:2000().
Kan, S. H. (2003). Metrics and models in Software Quality Engineering. Addison-Wiesley, 2nd edition.

Ludewig, . and Lichter, H. (2013). Software Engineering. dpunktverlag, 3. edition.

47

