Softwaretechnik / Software-Engineering

Lecture 14: UML State Machines

2016-06-30

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Design Sanity Check: Drive to Configuration

* Question: Is s (at.
(Otherwise. the designis definitely broken.)

« Approach: Check whether a configuration satisfying
w=0
is reachable, i.e. check
Now 30w =0.
for the vending machine model A

le to have no water in the vending machine model?

=
=

Topic Area Architecture & Design: Content

VLT Introduction and Vocabulary
« Principles of Design

modularity

i) separation of concerns

information hiding and data encapsulation
abstract data types, object orientation

« Software Modelling

) views and viewpoints, the 4+1 view
model-driven/ -based software engineering
Unified Modelling Language (UML)
modelling structure

vL12

implified) class diagrams
b) (simplified) object diagrams
<) (simplified) object constraint logic (OCL)
VL3 () modeling behaviour
. 2) communicating finite automata
S b) Uppaal query language
VL4 <) implementing CFA
B d) an outlook on UML State Machines
VL15 o Design Patterns

2|« Testing Introduction

Design Check: Scenarios

« Question: Is the following existenti
(Otherwise, the design s definitely broken)

d by the model?

« Approach: Use the following newly created CFA ‘Scenario’

end_of_scen

instead of User and check whether location end_of_scenario s reachable, i.e. check

'\ = 30 Scenario.end_of _scenario.

for the modified vending machine model A%

H
2
=

2

58

Content

CFA at Work continued

I-te design checks and verification
{-te Uppaal architecture

Lo case study

CFA vs. Software

|-t aCFAmodel is software

e implementing CFA

Lo Recall MDSE

UML State Machines

I-ie Core State Machines

{te steps and run-to-completion steps
Iie Hierarchical State Machines

Lie Rhapsody

* UML Modes

Design Verification: Invariants

« Question: Is t the case that the “tea” button is only enabled
if there is € 1.50 in the machine?
(Otherwise. the design i broken)
« Approach: Check whether the implication
tea_enabled — CoinValidator.have_c150

holds in all reachable configurations, i.e. check

Ny |= VO tea_enabled imply CoinValidator.have_c150

for the vending machine model Ny

Design Verification: Sanity Check

 Question: Is the “tea” button ever enabled?
(Otherwise, the considered invariant

tea_enabled = CoinValidator have_c150

holds vacuously)

« Approach: Check whether a configuration satisfying water_enabled — 1 is reachable.

Exactly like we did with w = 0 earlier.

¥ Trs
Uppaal Architecture
e . 8 = =
{ ey = Java
& -
' /
i
i
1 V4
L
1)
Cos
varityia
yessnosdontinon

Design Verification: Another Invariant

© Question: Is it the case that, if there is money in the machine
and water in stock, that the “water” button is enabled?

« Approach: Check

Nt [VO (CoinValidator.have _c50 or CoinValidator.have_c100 ot CoinValidator-have_c150)

imply ater_enabled.

Case Study: Wireless Fire Alarm System

(R1) The loss of the ability of the system to transmit a signal from a component to the central unit
is detected in less than 300 seconds [..].
AvecO([FAIL = i A —~DET;] = € < 300s)

(R2) Asingle alarm event is displayed at the central unit within 10 seconds.
1 = O([ALARM; A -DISP;] = €< 10s),

Aicc [ALARY

Recall: Universal LSC Example

Content

=
]
=

Borvarer
it

[comvaidaor | [ot | [Diperr

e 1
A |
A |
z |

CFA at Work continued
design checks and verification
Uppaal architecture

case study

CFA vs. Software

2 CFA model s software
mplementing CFA
Recall MDSE

UML State Machines

{~# Core State Machines

steps and run-to-completion steps
Hierarchical State Machines

L(e Rhapsody

* UML Modes

128

Formal Methods in the Software Development Process

A CFA Model Is Software

ooﬁ

Definition. Softw ite descr blyifi .
set [5] of (fite orinfinte) computation paths of the form ' <G :0<w__nw~m
000y oy Customer2 s“
W 4 Requirements
o 7, € %17 € Ny, is called state (or configuration), and
CFA vs. Software « a,€ A.i € Ny, s called action (o event). [= {(M.C, [1), (€M, [T} analyse
‘The (possibly partial)function [] : § + [S] s called interpreta-
tion of 5. Development
. Process/ Project
verif Management
 LetC(Ai,..., A,) beanetwork of CFA nalyse
« %= Conf
o A= Act
o €] = {m = (fo.va) 25 (Fr.11) 225 (Fa,va) 22 .. | wis a computation path of C}.
'+ Note: the structural model just consists of the set of variables and the locations of C. e
i
13738 i 1438 i 15138
Model-Driven Software Engineering Implementing CFA Example
 (Jacobson et al, 1992); “System development is model » Now that we have a CFA model C(A; . . ., Ay) (thoroughly checked using Uppaal),
« Model dri fty ineering (MDSE): everythi we would like to have software — an implementation of the model. FILLUP?
* Model based softv ineeri dels are used « This task can be split into two sub-tasks: q w:=3
(i) implement each CFA A; in the model by module 5.1, <F——
. implement the commul in the network by module Sc. T R FlLLUP?
S5 e (This has, by now, been provided implicitly by the Uppaal simulator and veri DOK! | UATES wi=3
reqemens \m ! =
T w==0
P l.v DOK!
e/ &U Se dispense wo
B <t $0, W0, dispese §
T calls . .
i w234 « @ « ot =3
L
e 7 & 7 7 & 7 o0 7 & st =i stor= DUATER)
L genenste/ s »A:..q Lgrot,
~ fpogam, Y
) P, . N else (o = FCLUP)
i [mpomevaet i =3,
m” i 1738 i 18738

16/38

Example

intw = 3

typedef (Wi.d Wo) st_T:
ST st 1= Wi A Giat
Set{Act) take

Ost=Wi: if
Oa=DWATER?: wi=w—1
st = dispense:
if (w=0) Ri=RU{DOK!}
if (w>0) R:= RU{DOK!}
3
Wis
RU{FILLUP?, DWATER?}

Oa= FILLUP?:
st

£
if
Oa=DOKIAw=0: sti= Wo:
e RU{FILLUP?}
Oa=DOKIA Wi:
RU{FILLUP?}

fi
Ost=wo: if
Oa= FILLUP?:

FILLUP?, DWATER?);
fi

fi

return R

i
18738

Putting It All Together

o LetA” = C(Ay, .., A,) with pairwise disjoint variables.

o Assume B = Biyput U Binternat, Where By, are dedicated input channels,
- there is no edge with action a! and a € Biyput.
o Then software S consists of S, .

.S, and the following Se.

Set(Act) Ry i= Ram
woid main() {

Roii /) initially enabled actions

Otrue: (o snd, rev) = select(Ry oo Rn); // choose synchronisation
T/ (w=0ia=n,

/ blocks on deadlock)

mii (0, snd. rev) := pead_input(); J/ or read input (snd = 0)
for (k=1 to n) if (snd = k) Ry := take_actiony(a); // sender
Jor (k=1 to n) if (rev = k) Ry := take_actions(a);
/ snapshot

a | e

}

// receiver

20

Translation Scheme. . .

ot A= ({fr. . L}, B, (o1, v} B L) with

E = {(€1,a1,0,00.0, 71,1, 60 1)+ (€1, @1img s @1y s Frng £y)s
(Eoms s Pt Tt € s s Qs P P s b)
Tsvr 3= Vi o Th Uk 3= Vkinis

typedef {£1,...,bn} SI_T;

S_T st = b

Set{Act) take_action(Acta) {
Set{Act) B = 0;

Oa=ai; Ayt Tigi
=t
#(0,% 0 Apra) Ri=RU{anak;

(€= tm A pmnn) Ri=RU{am,

i
return s
)
¥ 19738
Model vs. Implementation
« Define [Sx] to be the set of computation paths oy 2 oy 25 o, - -
such that o; has the values at ‘snapshot’ at the i-th iteration and «; is the i-th action.
o Then [Sx] bisimulates 7 (C(Ag. As. ... A,)) where A, has one location £ and edges
Eo = {(£, o, true, (), Bt}
8ot e, o= (ke 0.0 |0 € By}
FLw, o e
. N dy A o]
Aot
R 3w
&a [l 23
6 —0, — 0, —I 62
L ke
R~ !
§ @5 PR,
<yv s
: 2238

Deterministic CFA

Definition. A network of CFA C with (joint) alphabet B is called deterministic if
and only if each reachable configuration has at most one successor configuration,
e.if

Ve € Conf(C) reachable VA € By, U {7} Yer,ca € Conf(C) »

By A
cBalcDe = a=a.

hether C i PR,

3 IfCie inistic, then the lation of Cis a inistic program.

2073

Model vs. Implementation

« Define [Sx] to be the set of computation paths oy 2 7y 25 oy - -
such that o; has the values at ‘snapshot’ at the i-th iteration and «; is the i-th action.
« Then [Sx] bisimulates 7(C(Ap, Ax. ..., An)) where Aq has one location ¢ and edges

Eo={(t,al,true, (),0) | @ € Binpur}

 Yes,and...?

« If Uppaal reports that Ay |= 30 w = 0 holds, then w = 0 s reachable in [Sxry,]
« If Uppaal reports that

Ny = ¥ tea_enabled imply CoinValidator.have_c150

holds, then [Sxr,] s correspondingly safe

228

Model-Driven Software Engineering

cobson et al, 1992): “System development is model building

« Model driven software engineering (MDSE): everything is a model.
+ Model based software engineering (MBSE): some models are used.

e .\,.Wﬂ

~ =l

2373

UML Core State Machines

annot = [(event)| . (event)]” [[(quard)1] [/ (action)]]

trigger
with
o cvent € £, (optional)
o guard € Bapr (default: true, assumed to be in Eapr)
« action € Act (default: skip, assumed to be in Act)

2673

Content

CFA at Work continued

(e design checks and verification
« Uppaal architecture

e case study

CFA vs. Software

I-ie aCFAmodelis software
implementing CFA

Lo Recall MDSE

UML State Machines

« Core State Machines

o steps and run-to-completion steps
« Hierarchical State Machines

Lt Rhapsody

* UML Modes

2473

Event Pool and Run-To-Completion

eve pod

Fle > 0]

7 itsC1G

wy uz
step | state | stable : o state | stable 7 event pool
O [s | T [[27 st | T [Ereadyforur

2758

UML State Machines

Event Pool and Run-To-Completion

uy u2
step || state stable | o | state | stable | eventpool
T T

) s T ready for u
T) T 7 s | 1 Fready forua

27

Event Pool and Run-To-Completion

E/itsD!F

G

Flz > 0]

P JitsC1G
w uz
state | stable x state | stable event pool
s T [27 [s [T | Breadyform
52 T 7] s T Fready for uz
o | 1] s | 0
2 T 7] s 0 Grready for u;
27
Rhapsody Architecture
(compiler)
28738

Event Pool and Run-To-Completion

EfitsD! F

Rhapsody Architecture

Jeemd JitsC1G
K gl e >
H
w uz
state | stable || @ | state | stable || eventpool generate —

m T 7 = T || Ereadyforus
52 T = T ([Freadyforuz
P 1 7] s | o build / make
52 T [[27] s | 0 || Greadyform _—

M a 52 “ m s1 “ G ready for u; (compiler)

2 s st
P 4b 51 1 27] s 0
56| = T o = T
4 —_ ~— o ——— H Py fv o,
(o dfcond H 27 2830
Composite (or Hierarchical) States Example
+ OR-states, AND-states Harel (1987).
» Composite states are about , and avoiding
[} 0}
29

Would be Too Easy

— “Software Design, Modelling, and Analysis with UM

in the winter semester.

With UML it’s the Same [ay

/martinfowler. con/bliki]

The last slide is inspired by Martin Fowler, who puts it like this:

people differ about what should be in the UML

I came up with three primary classifications for thinking about the UML:

L h L lueprint, and Uml) ingLanguage

(L. S. Mellor independently came up with the same classifications,)

So when someone else’s view of the UML seems rather different to yours,
it may be because they use a different UmIMode to you.”

because there are differing fundamental views about what the UML should be.

Claim:
» This not only applies to UML as a language (what should be in it etc.?),
« but at least as well to each individual UML model.

3473

UML Modes

UML and the Pragmatic Attribute

Recall: def

ion “model” (Glinz, 2008, 425):

the pragmatic attribute,
.e. the model is bu a specific context for a specific purpose.

Examples for context/purpose:

Floorplan as sketch Floorplan as blueps Floorplan as program:

=
bg

[

Claim:
© This
© but

323 338
With UML it’s the Same |sttp://martinfouler. con/bliki] UML-Mode of the Lecture: As Blueprint
The last slide is inspired by Martin Fowler, who puts it like this: « The "mode’ fitting the lecture best is AsBlueprint
Goal:

Sketch Blueprint ProgramminglLanguage

Inthis persuse | [.] If you can detail the UML « be precise to avoid misunderstandings.

the UML I ide enough, ic " —

ets o asystem. L1 el by o desgner whose | for exerything you need + allow formal analysis of consistency/implication
. jobis to build a detailed design | software, you can make the on the design level - find errors early.

wﬁga are nwn H&s n he for a programmer to code up. UML be your programming

documents, in which case th ‘ther | That design should be language. Yet we tried to be consistent with the (informal semantics)

than completeness.[.] ety completesitall | Tokscan ke he U from the standard documents OMG (2007a,5) s far as possible.

fiagrams you draw an
The tools used for sketching are | and the i b
lightweight drawing tools and | follow as a pretty code. Plus:
e le arent too B .

O ngto | et 1| Thepromisaf thisis that UL « Being precise also helps to work in mode AsSketch:

every strict rule of the UML Blueprints require muchmore | 15 @ higher level language and Knowing “the real thing” should make it easier to

Most UML diagrams shown in | sophisticated tools than thus more productive than .

books, such as mine, are ‘sketches in order to handle the Mcia programming (i) “see” which blueprint(s) the sketch is supposed to denote, and

languages.

sketches. detailsrequired for the task.[..] | ‘" %6 (ii) to ask meaningful questions to resolve ambiguities.

Their emphasis s on selective | .. engineering tools supr | The question,of course. i

communication rather than port diagram drawing and back | whether this promise is true.

complete specification. itup with arepository toholdthe | | don't believe that graphical

Hence my sound-bite ‘compre- | jope ion ') programming will succeed just

hensiveness is the enemy of because its graphical [..]

comprehensibility”

3473 358

Tell Them What You've Told Them. ..

 We can use tools like Uppaal to

o check and verify CFA design models against requirements.

» CFA (and state charts)

« can easily be implemented using the translation scheme.

« Wanted: verification results carry over to the implementation.
« if code s not generated automatically.
Verify code against model.

 UML State Machines are

« principally the same thing as CFA,
yet provide more convenient syntax.

« Semantics uses
« asynchronous communication,
o run-to-completion steps.
in contrast to CFA
(We could define the same for CFA, but then
the Uppaal simulator would not be useful any more)

« Mind UML Modes.
3673

References

References

Avenis, S. . Westphal, B, Dietsch, D., Mufiiz, M., and Andisha, A. S. (2014). The wireless fire alarm system:
Ensuring conformance to industrial standards through formal verification. In Jones, C. B. Pihlajasaari, P. and Sun,
.. editors, FM 2014: Formal Methods - 19th International Symposium, Singapore, May 12-16, 2014. Proceedings,
volume 8442 of LNCS, pages 658-672. Springer.

Glinz, M. (2008). i in der Lehre an Hq Thesen und Informatik Spektrum,
31(5):425-434.

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of Computer Programming,
8(3)231-274.

Jacobson, I, Christerson, M., and Jonsson, P. (1992). Object-Oriented Software Engineering - A Use Case Driven
Approach. Addison-Wesley.

Ludewig,J. and Lichter, H. (2013). Software Engineering. dpunktverlag, 3. edition.
OMG (2007a). Unified modeling language: Infrastructure, version 2.1.2. Technical Report formal/07-11-04.

OMG (2007b). Unified modeling language: Superstructure, version 2.1.2. Technical Report formal/07-11-02

3873

