Formal Methods for Java
Lecture 3: Operational Semantics (Part 2)

Jochen Hoenicke

Software Engineering
- Albert-Ludwigs-University Freiburg

UNI
FREIBURG

May 3, 2017

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 3, 2017

1/12

Operational Semantics for Java

Idea: define transition system for Java

Definition (Transition System)

A transition system (TS) is a structure TS = (Q, Act, —), where
@ Q is a set of states,
@ Act a set of actions,

o —+C @ x Act x Q the transition relation.

Q reflects the current dynamic state (heap and local variables).
Act is the executed code.

Idea from: D. v. Oheimb, T. Nipkow, Machine-checking the Java
specification: Proving type-safety, 1999

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 3, 2017 2/12

State of a Java Program

The state of a Java program gives valuations local and global (heap)
variables.

@ @ = Heap x Local
@ Heap = Address — Class x seq Value
o Local = Identifier — Value
o Value =7, Address C Z
A state is denoted as (heap, Icl), where heap : Heap and lcl : Local.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 3, 2017 3/12

Actions of a Java Program

An action of a Java Program is either
@ the evaluation of an expression e to a value v, denoted as e v, or
@ a Java statement, or
@ a Java code block.

Note that expressions with side-effects can modify the current state

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 3, 2017 4/12

Rules

Definition (Inference Rules)

A rule of inference
Fi...F, where
c .

is a decidable relation between formulae. The formulae F4,..., F, are
called the premises of the rule and G is called the conclusion.

If n =0 the rule is called an axiom schema. In this case the bar may be
omitted.)

The intuition of a rule is that if all premises hold, the conclusion also holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 3, 2017 5/12

Rules for Java Expressions

axiom for evaluating local variables:

(heap, Icl) xelel(x) (heap, Icl)

axiom for evaluating constants:

(heap, Icl) =< (heap, Icl)

rule for field access:

heap. Icl) —€Ys (heap'. Icl' where idx is the index
(heap, cl) = (heap', Icl') ,of the field fld in the

(heap, Icl) e.fld>heap’ (v)(idx) (heap', Icl") object heap'(v)

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 3, 2017

6/ 12

Rules for Assignment Expressions

rule for assignment to local:

(heap, Icl) -2 (heap/, Icl")
(heap, Icl) === (heap/, IcI' & {x — v})

rule for assignment to field:

(heapy, Ich) 22 (heapy, Ich)

(heapy, Ich) 222 (heaps, Icl)

(heapy, lcly) —S:d=€2v2 5 (peap,, /c/3)’

where heaps = heapsz & {(v1, idx) — vo} and idx is the index of the field
fld in the object at heapsz(vi).

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 3, 2017 7/12

Rules for Java Statements

expression statement (assignment or method call):

(heap, Icl) —=% (heap/, Icl")
(heap, Icl) —== (heap’, Icl")

sequence of statements:

(heapy, Ich) = (heapy, Ich) (heaps, Icl) =2+ (heaps, Icls)

(heapy, Ich) =122 (heaps, Icl3)

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 3, 2017

8/ 12

Rules for Java Statements

if statement:

(heapy, Ich) —=% (heaps, Ich) (heaps, Ich) —%5 (heaps, Icl)

,Where v #£ 0

(heapy, Ich) fe) sielses, , (heaps, Ich)

(heapy, Ich) —=% (heaps, Ich) (heaps, Ich) 25 (heaps, Icl)

(heapy, Ich) fe) sielses, , (heaps, Ich)

,where v =10

while statement:

(heapy, Ich) if(e){s while(e) s} (heaps, Ich)

(heapa, Ich) _while(e)s (heapa, Ich)

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 3, 2017 9/12

Rule for Java Method Call

(heaps, Ich) == (heapa, Ich)

(heapy, Ich) % (heaps, Icl3)

(heappy1, Iclyy1) Sy (heappy2, Iclyi2)

(heappy2, mlcl) 22% (heapns, micl)

e.m(e1,...,en)>mlcl’(\result)

(heapnys, Iclyi2)

where body is the body of the method m in the object heapp2(v), and
mlcl = {this — v, paramy — v1, ..., param, — v, } where
paramy, . .., param, are the names of the parameters of m

(heap1 s /C/1)

The value \result is written by the return statement using the rule

(heaps, Ich) == (heapa, Ich)

(heapy, Ich) ™™ (heapy, Ich & {\result — v})

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 3, 2017 10 / 12

Example: Method Call

public class C
public int factorial(int n) {

if (n == 0)
return 1;
else

return n * this. factorial(n-1);

}}

Start state: (h, /), where [(this) is an object of class C
We show

(h, /) this.factorial(0)>1 (h, /)

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 3, 2017 11 /12

Example: Method Call

Let m/ = {this — I(this), n — 0}. Then,

(h, ml) =% (h, ml)
(h, ml) 2% (h, ml) (h, ml) 2215 (h, ml)
(h, ml) "==21, (b mi) (h, ml) €4 Loy (h mi @ {\result — 1})

(h, m/) if (n==0) return 1;else... (h, ml & {\resu/t N 1})

(h, 1) =R ()

(h, 1) 22 (h, 1)

(h, m/) if (n==0) return 1;else... (h, m/)
(h, /) =Eeer2OL, (b,)

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 3, 2017 12 / 12

