
Formal Methods for Java
Lecture 6: Introduction to JML

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

May 15, 2017

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 15, 2017 1 / 13

Semantics of a Specification (formally)

A function satisfies the specification

requires e1

ensures e2

iff for all executions

(Norm, heap, lcl) body−−−−→ (Ret, heap′, lcl ′)

with (Norm, heap, lcl) e1.v1−−−−→ q1, v1 6= 0, the post-condition holds, i. e.,
there exists v2, q2, such that

(Norm, heap′, lcl ′) e2.v2−−−−→ q2, where v2 6= 0

However we need a new rule for evaluating \old :

(Norm, heap, lcl) e.v−−−→ q

(Norm, heap′, lcl ′)
\old(e).v−−−−−−−→ q

,
where heap, lcl is the state of the pro-
gram before body was executed

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 15, 2017 2 / 13

Side-Effects in Specification

In JML side-effects in specifications are forbidden:
If e is an expression in a specification and

(Norm, heap, lcl) e.v−−−→ (flow , heap′, lcl ′)

then heap ⊆ heap′ and lcl = lcl ′.
Here, heap ⊆ heap′ indicates that the new heap may contain new
(unreachable) objects.
Also flow 6= Norm is possible. In that case the expression is considered to
be false.
A tool should warn the user if flow 6= Norm is possible.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 15, 2017 3 / 13

Exceptions in Specification

There were some discussions on exceptions in JML specifications.

next == null || next.prev == this is okay. It never throws a
null-pointer exception.

next.prev == this || next == null is not equivalent. It is not valid if
next is null.

Specifications that can throw an exception should be avoided.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 15, 2017 4 / 13

Lightweight vs. Heavyweight Specifications

A lightweigth specification
/*@ requires P;
@ assignable X;
@ ensures Q;
@*/

public void foo() throws IOException;

is an abbreviation for the heavyweight specification
/*@ public behavior
@ requires P;
@ diverges false;
@ assignable X;
@ ensures Q;
@ signals_only IOException
@*/

public void foo() throws IOException;

With the behavior-keyword there are no default values for diverges,
signals_only, and assignable.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 15, 2017 5 / 13

Making Exceptions Explicit

/*@ public normal_behavior
@ requires x >= 0;
@ assignable \nothing;
@ ensures \result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;
@ also
@ public exceptional_behavior
@ requires x < 0;
@ assignable \nothing;
@ signals (IllegalArgumentException) true;
@*/

public static int isqrt(int x) throws IllegalArgumentException {
if (x < 0)

throw new IllegalArgumentException();
body

}

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 15, 2017 6 / 13

Making Exceptions Explicit (2)

If several specification are given with also, the method must fulfill all
specifications.

Specifications with normal behavior implicitly have the clause
signals (java.lang.Exception) false

so the method must not throw an exception.

Specifications with exceptional behavior implicitly have the clause
ensures false

so the method must not terminate normally.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 15, 2017 7 / 13

The Java Modelling Language (JML)

JML is a behavioral interface specification language (BISL) for Java

Proposed by G. Leavens, A. Baker, C. Ruby:
JML: A Notation for Detailed Design, 1999

It combines ideas from two approaches:

Eiffel with it’s built-in language for Design by Contract (DBC)
Larch/C++ a BISL for C++

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 15, 2017 8 / 13

The Roots of JML

Ideas from Eiffel:

Executable pre- and post-condition (for runtime checking)
Uses Java syntax (with a few extensions).
Operator \old to refer to the pre-state in the post-condition.

Ideas from Larch:

Describe the state transformation behavior of a method
Model Abstract Data Types (ADT)

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 15, 2017 9 / 13

JML and Abstract Data Types

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 15, 2017 10 / 13

Running Example: A priority queue

Timer Priority queue

Subsystem

Subsystem

Subsystem

1st

Subsystems request timer events and queue them.

First timer event is passed to the timer.

Priority queue maintains events in its internal data structure.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 15, 2017 11 / 13

Interface for Priority Queue

public interface PriorityQueue {

public void enqueue(Comparable o);

public Comparable removeFirst();

public boolean isEmpty();

}

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 15, 2017 12 / 13

Adding (Incomplete) Specification

public interface PriorityQueue {

/*@ public normal_behavior
@ ensures !isEmpty();
@*/

public void enqueue(Comparable o);

/*@ public normal_behavior
@ requires !isEmpty();
@*/

public Comparable removeFirst();

public /*@pure@*/ boolean isEmpty();

}

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 15, 2017 13 / 13

