
Formal Methods for Java
Lecture 15: Object Invariants

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

June 21, 2017

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 21, 2017 1 / 31

The Invariant Problem

public class SomeClass {
/*@ invariant inv; @*/

/*@ requires P;
@ ensures Q;
@*/

public void doSomething() {

assume(P);
assume(inv);

...code of doSomething...

assert(Q);
assert(inv);

}
}

public class OtherClass {
public void caller(SomeObject o) {
...some other code...

assert(P);

o.doSomething();

assume(Q);

}
}

ESC/Java checks the highlighted assumes and asserts.

This is unsound!

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 21, 2017 2 / 31

Why Unsound?

The following rule is unsound:

{P ∧ inv} doSomething() {Q ∧ inv}
{P} doSomething() {Q}

This is also not the intuition...

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 21, 2017 3 / 31

What is the Intuition?

An invariant should hold (almost) always.

{true} some other code {P}
{true ∧ inv} some other code {P ∧ inv}

Only sound, if some other code cannot change truth of invariant.

For example, invariant depends only on private fields

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 21, 2017 4 / 31

Invariants Depend on Other Objects

Consider a doubly linked list:
class Node {
Node prev, next;
/*@ invariant this.prev.next == this && this.next.prev == this; @*/

}
class List {
public void add() {
Node newnode = new Node();
newnode.prev = first.prev;
newnode.next = first;
first.prev.next = newnode;
first.prev = newnode;

}
}

The invariant of this depends on the fields of this.next and this.prev.
Moreover the List.add function changes the fields of the invariants of Node.

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 21, 2017 5 / 31

The List example

First observation: The invariant should be put into the List class:
class Node {
Node prev, next;

}
class List {
/*@ private ghost JMLObjectSet nodes; @*/
/*@ invariant (\forall Node n; nodes.has(n);

n.prev.next == n && n.next.prev == n); @*/
public void add() {
Node newnode = new Node();
newnode.prev = first.prev;
newnode.next = first;
first.prev.next = newnode;
first.prev = newnode;
//@ set nodes = nodes.insert(newnode);

}
}

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 21, 2017 6 / 31

The List example

Second observation: Node objects must not be shared between two
different lists.
class Node {
/*@ ghost Object owner; @*/
Node prev, next;

}
class List {
/*@ private ghost JMLObjectSet nodes; @*/
/*@ invariant (\forall Node n; nodes.has(n);

n.prev.next == n && n.next.prev == n
&& n.owner == this); @*/

public void add() {
Node newnode = new Node();
//@ set newnode.owner = this;
newnode.prev = first.prev;
newnode.next = first;
first.prev.next = newnode;
first.prev = newnode;
//@ set nodes = nodes.insert(newnode);

}
}

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 21, 2017 7 / 31

The List example

Third observation: One may only change the owned fields.
class Node {
/*@ ghost Object owner; @*/
Node prev, next;

}
class List {
Node first;
/*@ private ghost JMLObjectSet nodes; @*/
/*@ invariant (\forall Node n; nodes.has(n);

n.prev.next == n && n.next.prev == n
&& n.owner == this); @*/

public void add() {
Node newnode = new Node();
//@ set newnode.owner = this;
newnode.prev = first.prev;
newnode.next = first;
//@ assert(first.prev.owner == this)
first.prev.next = newnode;
//@ assert(first.owner == this)
first.prev = newnode;
//@ set nodes = nodes.insert(newnode);

}
}

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 21, 2017 8 / 31

The Owner-as-Modifier Property

JML supports the owner-as-modifier property, when invoked as jmlc

--universes. The underlying type system is called Universes.

The class Object has a ghost field owner.

Fields can be declared as rep, peer, readonly.

rep Object x adds an implicit invariant (or requires) x.owner = this.
peer Object x adds an implicit invariant (or requires)
x.owner = this.owner.
readonly Object x do not restrict owner, but do not allow
modifications.

The new operation supports rep and peer:

new /*@rep@*/Node() sets owner field of new node to this.
new /*@peer@*/Node() sets owner field of new node to this.owner.

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 21, 2017 9 / 31

The List with Universes Type System

class Node {
/*@ peer @*/ Node prev, next;

}
class List {
/*@ rep @*/ Node first;
/*@ private ghost JMLObjectSet nodes; @*/
/*@ invariant (\forall Node n; nodes.has(n);

n.prev.next == n && n.next.prev == n
&& n.owner == this); @*/

public void add() {
Node newnode = new /*@ rep @*/ Node();
newnode.prev = first.prev;
newnode.next = first;
first.prev.next = newnode;
first.prev = newnode;
//@ set nodes = nodes.insert(newnode);

}
}

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 21, 2017 10 / 31

The Universes Type System

A simple type system can check most of the ownership issues:

rep T can be assigned without cast to rep T and readonly T.

peer T can be assigned without cast to peer T and readonly T.

readonly T can be assigned without cast to readonly T.

One need to distinguish between the type of a field peer Node prev and the
type of a field expression: rep Node first.prev.

If obj is a peer type and fld is a peer T field
then obj.fld has type peer T.

If obj is a rep type and fld is a peer T field
then obj.fld has type rep T.

If obj = this and fld is a rep T field
then this.fld has type rep T.

In all other cases obj.fld has type readonly T.

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 21, 2017 11 / 31

readonly References

To prevent changing readonly references there are these restrictions:
If obj has type readonly T then

obj.fld = expr is illegal.

obj.method(...) is only allowed if method is a pure method.

Otherwise, obj.fld = expr is legal iff expr can be cast to the type of
obj.fld.

It is allowed to cast readonly T references to rep T or peer T:

(rep T) expr asserts that expr.owner == this.

(peer T) expr asserts that expr.owner == this.owner.

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 21, 2017 12 / 31

Modification only by Owner

All write accesses to a field of an object are

in a function of the owner of the object or

in a function of a object having the same owner as the object
that was invoked (directly or indirectly) by the owner of the object.

An invariant that only depends on fields of owned objects can only be
invalidated by the owner or the function it invokes.

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 21, 2017 13 / 31

The Invariant Problem

There are some problems with invariants:

Ownership: invariants can depend on fields of other objects.
For example, the invariant of list accesses node fields.

Callback: invariants can be temporarily violated.
While invariant is violated we call a different method that calls back.

Atomicity: invariants can be temporarily violated.
While invariant is violated another thread accesses object.

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 21, 2017 14 / 31

Temporarily Violating Invariants

public class Container {
int[] content;
int size;
/*@ invariant 0 <= size && size <= content.length; @*/

public void add(int v) {
/* 1 */
size++;
/* 2 */
if (size > content.length) {
newContent = new int[2*size+1];
...
content = newContent;

}
...
/* 3 */

}
}

When do Invariants Hold?

Before a public method is called. /* 1 */

After a public method returns. /* 3 */

However, it may be violated in between. /* 2 */

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 21, 2017 15 / 31

Private Methods

public class Container {
int[] content;
int size;
/*@ invariant 0 <= size && size <= content.length; @*/

private void growContent() {

private /*@ helper @*/ void growContent() {

...
content = newContent;

}

public void add(int v) {
/* invariant should hold */
size++;
/* invariant may be violated */
if (size > content.length)
growContent();

...
/* invariant should hold, again */

}
}

Sometimes an invariant should not hold for a private method.
JML has the keyword /*@ helper @*/.

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 21, 2017 16 / 31

Calling Methods of Other Classes

public class Container {
int[] content;
int size;
/*@ invariant 0 <= size && size <= content.length; @*/

public void add(int v) {
/* invariant should hold */
size++;
/* invariant may be violated */
if (size > content.length) {
newContent = new int[2*size+1];
System.arraycopy(content, 0, newContent, 0, content.length);
content = newContent;

}

...
/* invariant should hold, again */

}
}

The invariant need not to hold, when calling other methods.

However there is the callback problem.

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 21, 2017 17 / 31

The Callback Problem

public class Log {
public void log(String p) {
logfile.write("Log: "+p+" list is "+Global.theList);

} }

public class Container {
int[] content;
int size;
/*@ invariant 0 <= size && size <= content.length; @*/

public void add(int v) {
/* invariant should hold */
size++;
/* invariant may be violated */
if (size > content.length) {
Logger.log("growing array.");

...
}

public String toString() {
/* invariant should hold */
...

} }

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 21, 2017 18 / 31

The Callback Problem

A method of a different class can be called while invariant is violated.

This method may call a method of the first class.

Who has to ensure that the invariant holds?

jmlrac complains that invariant does not hold

ESC/Java checks that most invariants hold at every method call,
but not all invariants; this may lead to unsoundness.

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 21, 2017 19 / 31

A Ghost Variable for Invariants

Idea of David A. Naumann and Mike Barnett:

Make the places where an invariant does not hold explicit.

Add a ghost variable packed that indicates if the invariant should hold.

Before modifying an object set this variable to false.

When modification is finished, set it to true.

The following invariant should always hold:
packed ==> invariants of object

The caller has to ensure that the objects he uses are packed.

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 21, 2017 20 / 31

Example: A Ghost Variable for Invariants

//@ public ghost boolean packed;
//@ private invariant packed ==> (size >= 0 && size <= content.length);

/*@ requires packed;
@ ensures packed;
@*/

public void add(int v) {
unpack this;
size++;
...
pack this;

}

The pre- and post-conditions explicitly states that invariant holds
unpack this is an abbrevation for:

assert this.packed;
set this.packed = false;

pack this is an abbrevation for:
assert !this.packed;
assert /*invariant of this holds*/;
set this.packed = true;

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 21, 2017 21 / 31

The pack/unpack Mechanism

object

packed == true

Invariant holds

object

packed == false

Invariant may be broken

object

packed == true

Invariant holds

unpack pack

object.f = val object.f = val object.f = val

An object must be unpacked before fields may be accessed.

The invariant has to hold only while object is packed.

The invariant may only depend on fields of the object.

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 21, 2017 22 / 31

Checking with Atomicity

Static Checking with packed ghost field:

Fields may only be modified if packed is false.

For each pack operation check that invariant holds again.

Thus packed ==> invariants holds for all states.

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 21, 2017 23 / 31

Tree Example

class TreeNode {
int key, value;
TreeNode left, right;
/*@ invariant left != null ==> left.key <= key; @*/
/*@ invariant right != null ==> right.key >= key; @*/

public void add(Node n) {
if (n.key < key) {
if (left == null)
left = n;

else
left.add(n);

} else {
...

}
}

}

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 21, 2017 24 / 31

Adding Packed variable

class TreeNode {
int key, value;
TreeNode left, right;
//@ public ghost boolean packed = false;

/*@ invariant packed ==> (left != null ==> left.key <= key); @*/
/*@ invariant packed ==> (right != null ==> right.key >= key); @*/

//@ requires packed;
//@ ensures packed;
public void add(/*@non_null@*/ TreeNode n) {
// unpack this
if (n.key < key) {
if (left == null)
left = n;

else
left.add(n);

} else {
...

}
// pack this

}
}

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 21, 2017 25 / 31

Running ESC/Java gives:

> escjava2 -q TreeNode.java

TreeNode.java:19: Warning: Precondition possibly not established (Pre)

left.add(n);

^

Associated declaration is "TreeNode.java", line 9, col 8:

//@ requires packed;

The nodes left and right must be packed!

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 21, 2017 26 / 31

Fixing the invariant

class TreeNode {
int key, value;
TreeNode left, right;
//@ public ghost boolean packed = false;

/*@ invariant packed ==> (left != null ==>
left.packed && left.key <= key); @*/

/*@ invariant packed ==> (right != null ==>
right.packed && right.key >= key); @*/

//@ requires packed;
//@ ensures packed;
public void add(/*@non_null@*/ TreeNode n) {
...

}
}

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 21, 2017 27 / 31

Adding Ownership

There are still problems:

The invariant also depends on fields of left and right.
In particular the left.key and left.packed.

Can unpack this violate the invariant of another TreeNode?

How can we exclude undesired sharing,
e.g., left == this or left == n?

Solution: Use the ownership principle

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 21, 2017 28 / 31

Ownership and pack/unpack

owner

left

right

owner

left

right

owner

left

right

owner.packed == true

left.packed == true

owner.packed == false

left.packed == true

owner.packed == false

left.packed == false

unpack owner

pack owner

unpack left

pack left

owner.f = val
left.f = val

owner.f = val
left.f = val

The owner must be unpacked before an owned object can be
unpacked.

The invariant of owner may depend on owned objects.

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 21, 2017 29 / 31

Ownership And pack/unpack

How does pack/unpack work with ownership?

To modify an object, you must unpack it first.

To unpack an object, you must unpack the owner.

To pack the owner again, its invariant must hold.

unpack obj is an abbreviation for:
assert(obj.packed);
assert(obj.owner == null || !obj.owner.packed);
set obj.packed = false;

pack obj ensures that its owned classes are packed.
assert(!obj.packed);
assert(left != null ==> (left.owner == this && left.packed));
assert(right != null ==> (right.owner == this && right.packed));
assert(/* other invariants of obj holds*/);
set obj.packed = true;

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 21, 2017 30 / 31

Adding Ownership

class TreeNode {
int key, value;
TreeNode left, right;
//@ public ghost Object owner;
//@ public ghost boolean packed = false;

/*@ invariant packed ==> (left != null ==>
left.owner == this && left.packed && left.key <= key); @*/

/*@ invariant packed ==> (right != null ==>
right.owner == this && right.packed && right.key >= key); @*/

/*@ requires packed && (owner == null || !owner.packed) &&
@ n.packed && n.owner == null;
@ ensures packed; */

public void add(/*@non_null@*/ TreeNode n) {
...

}
}

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 21, 2017 31 / 31

