
Formal Methods for Java
Lecture 4: Semantics of JML

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

May 8, 2017

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 8, 2017 1 / 11

Operational Semantics for Java

Idea: define transition system for Java

Definition (Transition System)

A transition system (TS) is a structure TS = (Q,Act,→), where

Q is a set of states,

Act a set of actions,

→⊆ Q × Act × Q the transition relation.

Q reflects the current dynamic state (heap and local variables).

Act is the executed code or expressions.

q e.v−−−→ q′ means that in
state q the expression e is evaluated to v and the side-effects change
the state to q′.

q st−−→ q′ means that in state q the statement st is executable and
changes the state to q′.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 8, 2017 2 / 11

Creating Objects

Creating an Object is always combined with the call of a constructor:

heap1 = heap ∪ {na 7→ (Type, 〈0, . . . , 0〉)
(heap1, lcl)

na.<init>(e1,...,en).v−−−−−−−−−−−−−−→ (heap′, lcl ′)

(heap, lcl)
new Type(e1,...,en).na−−−−−−−−−−−−−−→ (heap′, lcl ′)

, where na /∈ dom heap

Here <init> stands for the internal name of the constructor.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 8, 2017 3 / 11

Exceptions and Control Flow

To handle exceptions a few changes are necessary:

We extend the state by a flow component:
Q = Flow × Heap × Local

Flow ::= Norm|Ret|Exc〈〈Address〉〉

We use the identifiers flow ∈ Flow , heap ∈ Heap and lcl ∈ Local in the
rules. Also q ∈ Q stands for an arbitrary state.
The following axioms state that in an abnormal state statements are not
executed:

(flow , heap, lcl) e.v−−−→ (flow , heap, lcl), where flow 6= Norm

(flow , heap, lcl) s−→ (flow , heap, lcl), where flow 6= Norm

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 8, 2017 4 / 11

Expressions With Exceptions

The previously defined rules are valid only if the left-hand-state is not an
exception state.

(Norm, heap, lcl) e1.v1−−−−→ q q e2.v2−−−−→ q′

(Norm, heap, lcl)
e1*e2.(v1·v2) mod 232−−−−−−−−−−−−−−→ q′

(Norm, heap, lcl) st1−−→ q q st2−−→ q′

(Norm, heap, lcl) st1;st2−−−−→ q′

(Norm, heap, lcl) e.v−−−→ q q s1−−→ q′

(Norm, heap, lcl)
if(e) s1elses2−−−−−−−−→ q′

, where v 6= 0

Note that exceptions are propagated using the axiom from the last slide.

(flow , heap, lcl) e.v−−−→ (flow , heap, lcl), where flow 6= Norm

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 8, 2017 5 / 11

Throwing Exceptions

(Norm, heap, lcl) e.v−−−→ (Norm, heap′, lcl ′)

(Norm, heap, lcl) throw e;−−−−−→ (Exc(v), heap′, lcl ′)

What happens if in a field access the object is null?

(Norm, heap, lcl) e.0−−−→ q′

q′
throw new NullPointerException()−−−−−−−−−−−−−−−−−−−−→ q′′

(Norm, heap, lcl) e.fld.v−−−−−→ q′′
,where v is some arbitrary value

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 8, 2017 6 / 11

Complete Rules for throw

(Norm, heap, lcl) e.v−−−→ (Norm, heap′, lcl ′)

(Norm, heap, lcl) throw e;−−−−−→ (Exc(v), heap′, lcl ′)
, where v 6= 0

(Norm, heap, lcl) e.0−−−→ q′

q′
throw new NullPointerException()−−−−−−−−−−−−−−−−−−−−→ q′′

(Norm, heap, lcl) throw e;−−−−−→ q′′

(Norm, heap, lcl) e.v−−−→ (flow ′, heap′, lcl ′)

(Norm, heap, lcl) throw e;−−−−−→ (flow ′, heap′, lcl ′)
, where flow ′ 6= Norm

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 8, 2017 7 / 11

Catching Exceptions

Catching an exception:

(Norm, heap, lcl) s1−−→ (Exc(v), heap′, lcl ′)
(Norm, heap′, lcl ′ ∪ {ex 7→ v}) s2−−→ q′′

(Norm, heap, lcl)
try s1catch(Type ex)s2−−−−−−−−−−−−−−→ q′′

, where v is an instance of Type

No exception caught:

(Norm, h, l) s1−−→ (flow ′, h′, l ′)

(Norm, h, l)
try s1catch(Type ex)s2−−−−−−−−−−−−−−→ (flow ′, h′, l ′)

,

where flow’ is not
Exc(v) or v is
not an instance of
Type

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 8, 2017 8 / 11

Return Statement

Return statement stores the value and signals the Ret in flow component:

(Norm, heap, lcl) e.v−−−→ (Norm, heap′, lcl ′)

(Norm, heap, lcl) return e−−−−−→ (Ret, heap′, lcl ′ ⊕ {\result 7→ v})

But evaluating e can also throw exception:

(Norm, heap, lcl) e.v−−−→ (flow , heap′, lcl ′)

(Norm, heap, lcl) return e−−−−−→ (flow , heap′, lcl ′)
, where flow 6= Norm

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 8, 2017 9 / 11

Method Call (Normal Case)

(Norm, h1, l1) e.v−−−→ q2

q2
e1.v1−−−−→ q3

...
qn+1

en.vn−−−−→ (fn+2, hn+2, ln+2)

(fn+2, hn+2,ml) body−−−−→ (Ret, hn+3,ml ′)

(Norm, h1, l1)
e.m(e1,...,en).ml ′(\result)−−−−−−−−−−−−−−−−→ (Norm, heapn+3, ln+2)

,

where param1, . . . , paramn are the names of the parameters and body is
the body of the method m in the object heapn+2(v), and
ml = {this 7→ v , param1 7→ v1, . . . , paramn 7→ vn}

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 8, 2017 10 / 11

Method Call With Exception

(Norm, h1, l1) e.v−−−→ q2

q2
e1.v1−−−−→ q3

...
qn+1

en.vn−−−−→ (fn+2, hn+2, ln+2)

(fn+2, hn+2,ml) body−−−−→ (Exc(ve), hn+3,ml ′)

(Norm, h1, l1)
e.m(e1,...,en).ml ′(\result)−−−−−−−−−−−−−−−−→ (Exc(ve), heapn+3, ln+2)

,

where param1, . . . , paramn are the names of the parameters and body is
the body of the method m in the object heapn+2(v), and
ml = {this 7→ v , param1 7→ v1, . . . , paramn 7→ vn}

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 8, 2017 11 / 11

