
Formal Methods for Java
Lecture 19: Explicit State Model Checking and JVM

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

Jul 5, 2017

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 1 / 38



What Have We Seen?

JML Tools: Runtime assertion checking

ESC/Java: Static checking of JML annotations and runtime
constraints

KeY: Formal proof of JML annotations

å Symbolic state representation and reasoning

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 2 / 38



Explicit State Model Checking



Now: Explicit State

Concrete representation of states, e.g., x = 4, y = 3

Transitions produce new concrete states, e.g.,

x = 4, y = 3
x=x+1−−−−→ x = 5, y = 3

System model: Transition System (TS)

Graph search algorithms used to search for property violations

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 4 / 38



Transition Systems (Reminder)

Definition (Transition System)

A transition system (TS) is a structure TS = (Q,Act,→), where

Q is a set of states,

Act a set of actions,

→⊆ Q × Act × Q the transition relation.

q0start

q1

q2

q3

x++;

y++;

y++;

x++;

Q = {q0, q1, q2, q3}
I = {q0}
→ = {(q0, x++, q1),

(q1, y++, q3),
(q0, y++, q2),
(q2, x++, q3)}

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 5 / 38



Exploring Transition Systems

Treat transition system as graph

Use graph search algorithm to explore states

Different search strategies:

Depth-First-Search (DFS)
Breath-First-Search (BFS)
Greedy Search

å Goal: Find error fast (“before running out of memory”)
å More debugging than verification

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 6 / 38



Searching



Basics

Explore states in a graph.

Unify states.

Keep “pending list” of nodes yet to explore.

Keep “closed list” of already explored states.

Theory

Explore all possible states.

Practice

Heuristic cutoff:

bounded number of states

bounded path length

. . .

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 8 / 38



Abstract Searching

1 Choose and remove next state s.

2 If s is already closed, goto Step 1

3 Evaluate s.

4 Add all successors of s onto the pending list

5 Move s to closed list

Main Operations

State evaluation

Creation of successor states

State unification

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 9 / 38



Different Types

Uninformed Searches

Exploration order determined by graph structure.

Not goal-directed.

Informed Searches

Exploration order guided by heuristics and/or path length.

“Prefer short paths.”

Heuristic value = estimate of distance to goal.

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 10 / 38



Depth-First-Search (DFS)

uninformed search

first explore the successor nodes, then the siblings

Pending list: LIFO (e.g., stack)

q0start

q1

q2

q3

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 11 / 38



Breath-First-Search (BFS)

uninformed search

first explore the siblings, then the successor nodes

Pending list: FIFO (e.g., Queue)

q0start

q1

q2

q3

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 12 / 38



Greedy Search

informed search

heuristic estimate of the minimal distance of a state to a goal

expand state with minimal value of the heuristic

Pending list: Ordered list (e.g., priority queue or Heap)

Problems

Highly sensitive to heuristic

Plateaus

Found error path might still be long

. . . but highly efficient in practice

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 13 / 38



A∗ Search

informed search

use heuristic,

but also consider the cost of the path to the current state

expand state with minimal sum of heuristic value and path cost

Pending list: Ordered list (e.g., priority queue or Heap)

Admissible heuristics

Let n be a node and d(n) be the exact distance of node n to the goal.
Heuristic h is admissible if and only if

∀v . h(v) ≤ d(v)

A∗ search with admissible heuristic ensures shortest path to goal!

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 14 / 38



A Unified Search Framework

Observation

Search procedures only differ in the order in which they explore the state
space.

We can express all these search methods using two functions over states s
(and a bound on the length of paths):

d(s) - a distance function

h(s) - a heuristic function

Choose s that minimizes d(s) + h(s).
d(s) h(s)

DFS −pathlength(s) 0

BFS pathlength(s) 0

Greedy Search 0 heuristic(s)

A∗ pathlength(s) heuristic(s)

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 15 / 38



Java Virtual Machine



Virtual vs. Concrete Machine

Concrete Machine

Virtual Machine

Programs

Machine independent code

Machine dependent interpreter in machine code

Machine code interpreter

Rebuild for every concrete machine Compile once — Run everywhere

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 17 / 38



JVM Basics

JVM interprets .class files

.class files contain

a description of classes (name, fields, methods, inheritance
relationships, referenced classes, . . . )
a description of fields (name, type, attributes (visibility, volatile,
transient, . . . ))
bytecode for the methods

Stack machine

Typed instructions

Bytecode verifier to ensure type safety

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 18 / 38



Different Memory Areas

Java separates between

a Java stack

Used for method calls and expression evaluation
One per thread
Checked for overflows

a native stack

Used for native calls using JNI
Not directly usable by the bytecode
Not checked for overflows

a heap

Used for dynamic allocation
Managed by garbage collectors
Shared between all threads
Size limited by JVM configuration

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 19 / 38



Calling Methods

Activation Frame contains:

Variables local to the called method

Stack space for instruction execution (Operand Stack)

Operand Stack

Locals

. . .

One activation frame per method call: x.foo()

1 pushes new activation frame

2 calls the method foo

3 pops the activation frame

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 20 / 38



Executing Instructions

Arguments are on the operand stack
å Some instructions move local variables or constants to the stack

Most instructions pop topmost arguments from the stack and push
result onto the stack

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 21 / 38



Example: lcmp

Compare two long values l1 and l2.

long l2 = popLong();
long l1 = popLong();
if (l1 < l2)
push(-1);

if (l1 == l2)
push(0);

if (l1 > l2)
push(1);

l2

l1

. . .

lcmp−−−→ result

. . .

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 22 / 38



Java Native Interface (JNI)

foreign function interface

execution jumps to non-Java code

runs outside of VM

uses native stack

but can access JVM trough JNIEnv structure
å JNIEnv needed to translate between native stack and heap

useful to access native OS libraries or optimize certain computation
tasks
å Assumption: Native code is faster than Java code
å Note: Native code breaks platform independence

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 23 / 38



JVM Instructions

Most instructions are typed,

but internally, only int, long, and double matter.

Other types only used by the bytecode verifier

Instructions can be grouped

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 24 / 38



Instruction Group “Load Instructions”

tload where t ∈ {a, i , l , f , d}
Stores local variable on the operand stack

taload where t ∈ {a, b, s, i , l , f , d}
Stores element of an array on the operand stack

aconst null

Stores null on the operand stack

tconst <n> where t ∈ {i , l , d}
Stores constant on the operand stack (only limited values possible)

bipush, sipush
Push byte resp. short constant on the operand stack

ldc

Load constant from the constant pool

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 25 / 38



Instruction Group “Store Instructions”

tstore where t ∈ {a, i , l , f , d}
Store top of operand stack into local variable

tastore where t ∈ {a, b, s, i , l , f , d}
Store top of operand stack into array

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 26 / 38



Instruction Group “Stack Manipulation”

pop and pop2

Remove the topmost (2) elements from the operand stack

dup, . . .
Duplicate the top element(s) of the stack

swap

Exchange the topmost two elements on the operand stack

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 27 / 38



Instruction Group “Conversion Instructions”

i2t where t ∈ {b, c, d , f , l , s}
Convert int

l2t where t ∈ {d , f , i}
Convert long

f2t where t ∈ {d , i , l}
Convert float

d2t where t ∈ {f , i , l}
Convert double

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 28 / 38



Instruction Group “Branching Instructions”

if acomp

Compare two references and jump on success

if icomp

Compare two ints and jump on success

if

Compare against 0 and jump on success

tcmp where t ∈ {f , d}
Compare two floating point numbers (don’t jump)

ifnonnull

Jump if reference is not null

ifnull

Jump if reference is null

goto

Unconditional jump

jsr

Jump to subroutine

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 29 / 38



Instruction Group “Switch Instructions”

lookupswitch

Switch based upon a search in an ordered offset table

tableswitch

Switch based on index into an offset table

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 30 / 38



Instruction Group “Return Instructions”

treturn where t ∈ {a, i , l , f , d}
Return a value from a method

return

Return from a void method

ret

Return from subroutine

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 31 / 38



Instruction Group “Arithmetic Instructions”

tneg with t ∈ {i , l , f , d}
Negate a number

tadd with t ∈ {i , l , f , d}
Add two numbers

tsub with t ∈ {i , l , f , d}
Subtract two numbers

tmul with t ∈ {i , l , f , d}
Multiply two numbers

tdiv with t ∈ {i , l , f , d}
Divide two numbers

trem with t ∈ {i , l , f , d}
Compute the remainder of a division (result = value1 − (value2 ∗ q))

iinc

Increment integer by constant

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 32 / 38



Instruction Group “Logic Instructions”

tand where t ∈ {i , l}
Bitwise and

tor where t ∈ {i , l}
Bitwise or

txor where t ∈ {i , l}
Bitwise xor

tshr where t ∈ {i , l}
Logical shift right with sign extension

tushr where t ∈ {i , l}
Logical shift right with zero extension

tshl where t ∈ {i , l}
Logical shift left

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 33 / 38



Instruction Group “Object Creation Instructions”

new

Create a new object on the heap

newarray

Create a new array containing only elements of a primitive type on
the heap

anewarray

Create a new array containing only elements of a reference type on
the heap

multianewarray

Create a new multi-dimensional array on the heap

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 34 / 38



Instruction Group “Field Access Instructions”

getfield

Get the value of an instance field

getstatic

Get the value of a static field

putfield

Write the value of an instance field

putstatic

Write the value of a static field

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 35 / 38



Instruction Group “Method Invocation”

invokeinterface

Invoke method with polymorphic resolution

invokespecial

Invoke method without polymorphic resolution

invokestatic

Invoke a static method

invokevirtual

Invoke method with polymorphic resolution.

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 36 / 38



Instruction Group “Monitor Instructions”

monitorenter

Enter a critical section

monitorexit

Leave a critical section

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 37 / 38



Instruction Group “Miscellaneous”

arraylength

Get the length of an array

checkcast

Check a cast and throw a ClassCastException if cast fails

instanceof

Check if reference points to an instance of the specified class

athrow

Throw an exception or an error

nop

Do nothing

wide

Enable bigger operands

Jochen Hoenicke (Software Engineering) FM4J Jul 5, 2017 38 / 38


	Explicit State Model Checking
	Searching
	Java Virtual Machine

