
Formal Methods for Java
Lecture 13: Dynamic Logic

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

June 14, 2017

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 1 / 19



The -Project

Theorem Prover

Developed at University of Karlsruhe

http://www.key-project.org/.

Theory specialized for Java(Card).

Can generate proof-obligations from JML specification.

Underlying theory: Sequent Calculus + Dynamic Logic

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 2 / 19

http://www.key-project.org/


Dynamic Logic

Dynamic logic extends predicate logic by

[α]φ

〈α〉φ
where α is a program and φ a sub-formula.

The meaning is as follows:

[α]φ: after all terminating runs of program α formula φ holds.

〈α〉φ: after some terminating run of program α formula φ holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 3 / 19



Comparison with Hoare Logic

The sequent φ =⇒ [α]ψ corresponds to partial correctness of the Hoare
formula:

{φ}α{ψ}

If α is deterministic, φ =⇒ 〈α〉ψ corresponds to total correctness.

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 4 / 19



Examples

[{}]φ ≡ φ
〈{}〉φ ≡ φ
[while(true){}]φ ≡ true

〈while(true){}〉φ ≡ false

[x = x + 1; ]x ≥ 4 ≡ x + 1 ≥ 4

[x = t; ]φ ≡ φ[t/x ]

[α1α2]φ ≡ [α1][α2]φ

How can we use equivalences in Sequent Calculus?

Add the rule
Γ[ψ/φ] =⇒ ∆[ψ/φ]

Γ =⇒ ∆
, where φ ≡ ψ.

This is similar to applyEq.

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 5 / 19



Dynamic Logic is Modal Logic

〈α〉φ ≡ ¬[α]¬φ
[α]φ ≡ ¬〈α〉¬φ

Furthermore:

if φ is a tautology, so is [α]φ

[α](φ→ ψ)→ ([α]φ→ [α]ψ)

Remark: For deterministic programs also the reverse holds

([α]φ→ [α]ψ)→ [α](φ→ ψ)

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 6 / 19



Termination and Deterministic Programs

How can we express that program α must terminate?

〈α〉true

This can be used to relate [α] and 〈α〉:

〈α〉φ ≡ [α]φ ∧ 〈α〉true

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 7 / 19



Updates in KeY

The formula 〈i = t;α〉φ is rewritten to

{i := t}〈α〉φ

Formula {i := t}φ is true, iff
φ holds in a state, where the program variable i has the value denoted by
the term t.
Here:

i is a program variable (non-rigid function).

t is a term (may contain logical variables).

φ a formula

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 8 / 19



Simplifying Updates

If φ contains no modalities, then {x := t}φ is the substitution φ[t/x ]
(every occurence of x is changed to t).

A double update {x1 := t1, x2 := t2}{x1 := t ′1, x3 := t ′3}φ is automatically
rewritten to

{x1 := t ′1[t1/x1, t2/x2], x2 := t2, x3 := t ′3[t1/x1, t2/x2]}φ

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 9 / 19



Example: 〈{i = j; j = i+ 1}〉i = j

〈{i = j; j = i + 1}〉i = j

≡{i := j}{j := i+1}i = j

≡{i := j, j := j + 1}i = j

≡j = j + 1

≡false

or alternatively

〈{i = j; j = i + 1}〉i = j

≡{i := j}{j := i+1}i = j

≡{i := j}i = i + 1

≡j = j + 1

≡false

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 10 / 19



Rules for Java Dynamic Logic

〈{i = j; ...}〉φ is rewritten to:
{i := j}〈{...}〉φ.

〈{i = j + k; ...}〉φ is rewritten to:
{i := j + k}〈{...}〉φ.

〈{i = j + +; ...}〉φ is rewritten to:
〈{int j 0; j 0 = j; j = j + 1; i = j 0; ...}〉φ.

〈{int k; ...}〉φ is rewritten to:
〈{...}〉φ and k is added as new program variable.

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 11 / 19



Proving Programs with Loops

Given a simple loop:

〈{while(n > 0) n--; }〉n = 0

How can we prove that the loop terminates for all n ≥ 0 and that n = 0
holds in the final state?

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 12 / 19



Method (1): Induction

To prove a property φ(x) for all x ≥ 0 we can use induction:

Show φ(0).

Show φ(x) =⇒ φ(x + 1) for all x ≥ 0.

This proves that ∀x (x ≥ 0→ φ(x)) holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 13 / 19



The rule int induction

The KeY-System has the rule int induction

Γ =⇒ ∆, φ(0) Γ =⇒ ∆, ∀X (X ≥ 0 ∧ φ(X )→ φ(X + 1))
Γ,∀X (X ≥ 0→ φ(X )) =⇒ ∆

Γ =⇒ ∆

The three goals are:

Base Case: =⇒ φ(0)

Step Case: =⇒ ∀X (X ≥ 0 ∧ φ(X )→ φ(X + 1))

Use Case: ∀X (X ≥ 0→ φ(X )) =⇒

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 14 / 19



Method(2): Loop Invariants with Variants

Induction proofs are very difficult to perform for a loop

〈{while(COND)BODY ; . . .}〉φ

The KeY-system supports special rules for while loops using invariants and
variants.

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 15 / 19



The rule while invariant with variant dec

The rule while invariant with variant dec takes an invariant inv , a modifies
set {m1, . . . ,mk} and a variant v . The following cases must be proven.

Initially Valid: =⇒ inv ∧ v ≥ 0
Body Preserves Invariant:

=⇒ {m1 := x1‖ . . . ‖mk := xk}(inv ∧ [{b = COND; }]b = true

→ 〈BODY 〉inv

Use Case:

=⇒ {m1 := x1‖ . . . ‖mk := xk}(inv ∧ [{b = COND; }]b = false

→ 〈. . .〉φ

Termination:

=⇒ {m1 := x1‖ . . . ‖mk := xk}(inv ∧ v ≥ 0 ∧ [{b = COND; }]b = true

→ {old := v}〈BODY 〉v ≤ old ∧ v ≥ 0

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 16 / 19



Rigid vs.Non-Rigid Functions vs. Variables

KeY distinguishes the following symbols:

Rigid Functions: These are functions that do not depend on the
current state of the program.

+,−, ∗ : integer × integers → integer (mathematical operations)
0, 1, . . . : integer , TRUE ,FALSE : boolean (mathematical constants)

Non-Rigid Functions: These are functions that depend on current
state.

·[·] : >× int → > (array access)
.next : > → > if next is a field of a class.
i, j : > if i, j are program variables.

Variables: These are logical variables that can be quantified.
Variables may not appear in programs.

x , y , z

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 17 / 19



Example

∀x .i = x → 〈{while(i > 0){i = i− 1; }}〉i = 0

0,1,− are rigid functions.

> is a rigid relation.

i is a non-rigid function.

x is a logical variable.

Quantification over i is not allowed and x must not appear in a program.

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 18 / 19



Builtin Rigid Functions

+,−,∗,/,%,jdiv ,jmod : operations on integer .

. . . ,−1, 0, 1, . . ., TRUE ,FALSE , null : constants.

(A) for any type A: cast function.

A :: get gives the n-th object of type A.

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 19 / 19


