Exercise 1: Havoc

We define the transition relation for the guarded command \texttt{havoc} \(x \) as follows.

\[\rho_{\text{havoc}}(x) \equiv \text{skip}(V \setminus \{ x \}) \equiv \bigwedge_{y \in V, y \neq x} y' = y. \]

(a) Show that \(\text{wp}(\varphi \land x = 0, \rho_{\text{havoc}}(x)) \equiv \text{false} \) for any formula \(\varphi \).

(b) Let \(\varphi_{x=0} \) be a formula that contains \(x = 0 \) as a subformula.

Show that \(\text{wp}(\varphi_{x=0}, \rho_{\text{havoc}}(x)) \equiv \text{false} \) does not hold in general.

Recall that \(\text{wp}(\varphi, \rho) \equiv \forall V'. \rho \rightarrow \varphi[V'/V] \).

Exercise 2: Weakest precondition and strongest postcondition

Let \(\varphi \) and \(\psi \) be arbitrary predicates and \(\rho \) be a transition relation.

Give a counterexample for each of the following statements if it does not hold.

(a) \(\varphi = \text{wp}(\psi, \rho) \iff \text{post}(\varphi, \rho) = \psi \)

(b) \(\varphi \subseteq \text{wp}(\psi, \rho) \iff \text{post}(\varphi, \rho) \subseteq \psi \)

(c) \(\varphi \supseteq \text{wp}(\psi, \rho) \iff \text{post}(\varphi, \rho) \supseteq \psi \)

Exercise 3: Reachable states

Compute the set of reachable states for the program below. Note that we changed \(\varphi_{\text{init}} \).

\[
P = (V, pc, \varphi_{\text{init}}, \mathcal{R}, \varphi_{\text{err}})
\]

\[
V = (pc, x, y, i, j)
\]

\[
\mathcal{L} = \{ \ell_0, \ell_1, \ell_2, \ell_3, \ell_4, \ell_5, \ell_6, \ell_{\text{ex}}, \ell_{\text{err}} \}
\]

\[
\varphi_{\text{init}} \equiv pc = \ell_0 \land i = 2 \land j = 2
\]

\[
\varphi_{\text{err}} \equiv pc = \ell_{\text{err}}
\]

\[
\mathcal{R} = \{ \rho_1, \rho_2, \rho_3, \rho_4, \rho_5, \rho_6, \rho_7, \rho_8 \}
\]

\[
\rho_1 \equiv \text{move}(\ell_0, \ell_1) \land x' = i \land \text{skip}(i, y, j)
\]

\[
\rho_2 \equiv \text{move}(\ell_1, \ell_2) \land y' = j \land \text{skip}(x, i, j)
\]

\[
\rho_3 \equiv \text{move}(\ell_2, \ell_3) \land x \neq 0 \land \text{skip}(x, i, y, j)
\]

\[
\rho_4 \equiv \text{move}(\ell_2, \ell_6) \land x = 0 \land \text{skip}(x, i, y, j)
\]

\[
\rho_5 \equiv \text{move}(\ell_3, \ell_4) \land x' = x - 1 \land \text{skip}(i, y, j)
\]

\[
\rho_6 \equiv \text{move}(\ell_4, \ell_2) \land y' = y - 1 \land \text{skip}(x, i, j)
\]

\[
\rho_7 \equiv \text{move}(\ell_6, \ell_{\text{ex}}) \land (i = j \rightarrow y = 0) \land \text{skip}(x, i, y, j)
\]

\[
\rho_8 \equiv \text{move}(\ell_6, \ell_{\text{err}}) \land \neg(i = j \rightarrow y = 0) \land \text{skip}(x, i, y, j)
\]
Exercise 4: Inductive invariants

Consider the following program from the lecture

\[P = (V, pc, \varphi_{init}, R, \varphi_{err}) \]

where the tuple of program variables \(V \) is \((pc, x, y, z)\), the initial condition \(\varphi_{init} \) is \(pc = \ell_1\), the error condition \(\varphi_{err} \) is \(pc = \ell_5\), and the set of transition relations \(R \) contains the following transitions.

\begin{align*}
\rho_1 &= (move(\ell_1, \ell_2) \land y \geq z \land \text{skip}(x, y, z)) \\
\rho_2 &= (move(\ell_2, \ell_2) \land x + 1 \leq y \land x' = x + 1 \land \text{skip}(y, z)) \\
\rho_3 &= (move(\ell_2, \ell_3) \land x \geq y \land \text{skip}(x, y, z)) \\
\rho_4 &= (move(\ell_3, \ell_4) \land x \geq z \land \text{skip}(x, y, z)) \\
\rho_5 &= (move(\ell_3, \ell_5) \land x + 1 \leq z \land \text{skip}(x, y, z))
\end{align*}

(a) Is the complement of \(\varphi_{err} \) an inductive invariant? If not, give a counterexample.

(b) What is the weakest\(^1\) inductive invariant that is contained in the complement of \(\varphi_{err} \) (i.e., disjoint from \(\varphi_{err} \))?

(c) Describe a (possibly non-terminating) algorithm to construct the weakest inductive invariant that is contained in the complement of \(\varphi_{err} \) (for any program that is safe).

Hint: Eliminate states that can reach an error state.

\(^1\)A formula \(\varphi \) is weaker than a formula \(\psi \) if \(\psi \) implies \(\varphi \). An inductive invariant \(\varphi \) is the weakest inductive invariant if \(\varphi \) is implied by all other inductive invariants.