
Prof. Dr. Andreas Podelski
Dr. Matthias Heizmann
Christian Schilling

Preference deadline: July 3, 2017
Discussion: July 5, 2017

Tutorial for Program Verification
Exercise Sheet 9

Exercise 1: AbstReach 2 Points
Consider the following program.

int x, y, z, w;

void foo() {

1: do {

2: z := 0;

3: x := y;

4: if (w == 17){

5: x++;

6: z := 1;

}

7: } while (x != y);

8: assert (z != 1);

}

Solve the following tasks without explicitly executing the procedure AbstReach (unless
you have a lot of free time and paper).

(a) Is the program safe? Give an intuitive argument.

(b) Give three predicates (in addition to the predicates on the program counter) such
that the corresponding abstraction is sufficient to prove safety. Give the correspond-
ing abstract reachability graph (in an informal representation where the edges are
labeled by line numbers).

(c) Give the abstract reachability graph that corresponds to the abstraction for the
set of predicates Pred0 which contains only the predicates on the program counter.
Take the shortest counterexample path. Add one predicate p1 to eliminate this first
counterexample.

(d) Give the abstract reachability graph that corresponds to the abstraction for the set
of predicates Pred1 := Pred0 ∪ {p1}. Take again the shortest counterexample path.
Add two predicates p2 and p3 to eliminate this counterexample. (Did you get the
three predicates from (b)?)

1

Exercise 2: State space explosion 1 Point
Consider the procedure AbstReach. Let n := |Preds| be the number of predicates. Let
m := |R| be the number of transitions of the program.

(a) How many abstract reachable states (elements of ReachStates#) are there in the
worst case?

(b) How many times do we check validity of an implication ϕ |= p in the worst case?

(c) Let us roughly estimate the maximal number of predicates a tool can deal with
(in the worst case). Consider the following setting: We have an implementation
of AbstReach that may use up to 4 gibibyte, one abstract state needs 32 byte
and we neglect the memory necessary for all other data (e.g., the Parent relation).
What is the maximal number of predicates nmax such that our implementation of
AbstReach does not run out of memory? Consider the worst case scenario from
part (a).

(d) Let us roughly estimate the runtime of AbstReach for nmax predicates. Consider
the following setting: We have m = 1000 relations. The theorem prover always
needs exactly one millisecond to decide validity of an implication ϕ |= p. If we
neglect the runtime of all components but the theorem prover, how much time
does it take in the worst case to compute the set of all reachable abstract states?
Consider the worst case scenario from part (b).

(e) Suggest an optimization for the AbstRefineLoop algorithm that can reduce the
number of abstract states.

Exercise 3: Least fixed point of post# 1 Point
Let S be a set of states. Let the concrete domain D be the powerset of S, i.e., D := P(S).
Let D# ⊆ D be the abstract domain. Let α : D → D# be defined as follows.

α(x) :=
⋂
{y ∈ D# | x ⊆ y}

For transition relation ρ and ϕinit ∈ D define post#(s, ρ) := α(ϕinit) ∪ α(post(s, ρ)).

In the lecture you have seen a proof by induction that the least fixed point1 of post# is
the smallest (i.e., most precise) element of the abstract domain that is inductive under
post w.r.t. ϕinit.

(a) Give a more elegant proof that does not use induction.

(b) In the lecture we have seen several properties of α. Which ones did you need in the
proof?

Hint : It suffices to show that lfp(post#) ⊆ ϕ holds for any ϕ with the following properties:

(1) ϕ is an element of the abstract domain, i.e., ϕ ∈ D#.

(2) ϕ is inductive under post w.r.t. ϕinit, i.e., ϕinit ⊆ ϕ and post(ϕ, ρ) ⊆ ϕ.

1Let f : L → L be a function over some domain L. The least fixed point of f , written lfp(f), is a
smallest set X such that f(X) = X. In this exercise the least fixed point is unique.

2

