Softwaretechnik / Software-Engineering

Lecture 1: Introduction

Prof. Dr. Andreas Podelski

Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

INTERNATIONAL ISO/IEC/
STANDARD IEEE

24765
Systors and softwars onginoaring —
Vocamniary

40

Content

o Software, Engineering, Software Engineering

Successful Software Development

e working d

n: success
< unsuccessful software development exists
e’ common reasons for non-success

Course

{-e Content

o topicareas

o structure of topic areas

o emphasis: formal methods
 relation to other courses

Ls Organisation
o lectures
* tutorials

* exam

Software — Computer programs, procedures, and possibly associated documentation
and data pertaining to the operation of a computer system.

See also: application software; support software: system software.
Contrast with: hardware. IEEE 610.12(1990)
Software -

w N

. all or part of the programs, procedures, rules, and associated documentation of an

information processing system. [.]
see 61012

. program or set of programs used to run a computer. [..]

data, and i tatementt

IEEE 24765 (2010)

Software, Engineering, Software Engineering

Engineering vs. Non-Engineering

workshop
(technical product)
Mental the existing and artists inspiration,
prerequisite | avallable technical among other
know-how
Deadlines can usually €planned Y| cannot be planned due
with sufficientpreciston | to dependency on
artsts inspiration
Price determined by market
value, not by cost
Norms and exist, are known, and are rare and, if known,
standards are usually respected not respected
Evaluation and is only possible.
comparison ively,
disputed
Author i 3 i
oftenlacks emotional | part of him/herself
ties tothe product
Warrantyand | are clearly regulated, are not defined and in
liability cannot be excluded practice hardly
enforceable

(Ludewig and Lichter, 2013)

b

Software Engineering

Software Engineering -
(1) The application of a systematic, ed, quantifiable approach to the develop-
ment, operation, and software; that licati

to software.
(2) The study of approaches asin

IEEE 610.12(1990)

Software Engineering -

1. the systematic application of scientific and technological knowledge, methods, and
experience to the design, ion, testing, and ion of software.

2. see [EEE 61012 (1) 1SO/IEC/IEEE 24765 (2010)

Software Engineering-
Multi-person Development of Multi-version Programs.
D. L. Parnas (201

Software Engineering - th and use of sound
ples to obtain economically software that is reliable and works effi-
ntly on real machines. F. L. Bauer (1971)

‘software that is reliable and works efficiently” (Bauer, 1971)

More general: software of (good) quality (cf. ISO/IEC 9126-1:2000 (2000))

process quality —————— P suitability
accuracy

—_—

= interoperabilty

functionality

\\
reliability =——— fa
recover
understandability

usability — leamability

— == operability
—

software related qua

product quality attractiveness
_ time behaviour
resource utiisation
analysability
—— changeability

maintainability ———— "

efficiency

of the software product to maintain
d level of performance when used under

specfiedcondifions

6.2.2 Fault tolerance adaptat
The capability of the software product to maintain a b — installa
: specified level of performance in cases of software portability = co-existence

faults or of infringement of its specified interface. replaceability

10/02

B —— Software

Cilined, qpantiia

ames) I here is no universally accepted definition of software engineering.

and technalogical knowledge. methods. and experience to the
‘esign implementaton.
2see61012()

Software
Twon’t

settle on any of these definitions; rather, I'd like to accept that they are

some way valid and retain all the views of software they encompass.

gineering principies to obtain economically software that
able and works effcentl on real machines. L Baver

8/m
“ : . : ”
software that is reliable and works efficiently” (Bauer, 1971)
More general: software of (good) quality (cf. ISO/IEC 9126-12000 (2000))
process quality —————— ity
. 1y = acouacy
unctionality
=—— interoperability
— security
maturity
software related quality &ﬁeﬁa ity
understandability
product qualty atractiveness
T timebehaviour
resource utilisation
6.1 Functionality
The capability of the software product to_provide
functions which meet stated andimplied jhen maintainal
the software is used under specified conditions.
The capability of the software product to provide an portability =——— 5
appropriate set of functions for specified tasks and T coexistence
user objectives. replaceability
10/42

The course’s working definition of Software Engineering

Software Engineering

(1) The application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software; that is, the applica-
tion of engineering to software.

(2) The study of approaches as in (1) |EEE 610.12 (1990)

Software Engineering ~ the establi and use of sound
principles to obtaift economically software that is reliable and works e
ciently on real machines. F. L. Bauer|

cost,
time.

N
sy =
!
|
!

scope.
quality

The course’s working definition of Software Engineering

Software Engineering —
(1) The application of a systematic, d . ble approach to the
development, operation, and maintenance of software; that s, the applica-
tion of engineering to software.

(2) The study of approaches as in (1) IEEE 610.12 (1990)
Software Engineering - the I and use of sound

principles to obtain economically software that i reliable and works effi-
ciently on real machines. F. L. Bauer (1971

Successful Software Development

1

Some Empirical Findings (Buscherméhle et al. (2006))

30 notspec)

i

n
114

When is Software Development Successful?

iii

Developer Customer User

A software development project is successful

if and only if

developer, customer, and user are happy with the result at the end of the project.

242

A Closer Look

* Successful:

Time t: n@

* Unsuccessful:

15/

1302

Time ¢’ > :

S

Doeioe e
software) detvry

Timet' > t:

. 2

software) delivery

What might've gone wrong?

Is Software Development Always Successful?

SuUccess

u
o unm

Erfolgs- und Misserfolgsfaktoren
bei der Durchfiihrung von Hard- und
Softwareentwicklungsprojekten
in Deutschland

2006

Repon Vst

st 00206

Time t' > t:

preedimeal -
@
b
€2
28
3
® (Software) Project Management
Some scenarios:
® @ @ ® ©®
X VvV vV vV V egmi ing of requi
v X V v v egnon-scalable design, feature forgotten
V vV X V V eg programming mistake
v vV Vv X V egwrongly conducted test
V V V V X egwongestimates, bad scheduling

1470

7m

In Other Words

All engineering disciplines face the same questions:

* How to describe i / avoid mi with the
* How to describe design ideas / avoid mi lings with the ir

« How to ensure that the product is built right / that the right product is built?
(> How to measure the quality of the product?)

« How to schedule activi

s properly?

At best: re there procedures which promise to systematically avoid certain mistakes or costs?

T

« How to describe requirements on software precisely?

course is about Software Engineering, so we should discuss:

« How to describe design ideas for software precisely?

» How to ensure that software is built right?
(—+ How to measure the quality of software?)
« How to schedule software development activi

s properly?

Whatare procedures to systematically avoid certain mistakes or costs in software development?

18742

Course: Content

A

Example: Nightly Builds

Scenari

« Program P compiles successfully at time t.
« Programmers work for duration d.on P, yielding program P at time ¢ + d.
« P’ does not no_.:m;m attime t + d.

—+ the reason for not compiling any more must be among the changes during .

Experience:

o If dislarge, it can be very difficult (and time consuming) to identify the cause.

Proposal: “Nightly Builds™

« Setup a procedure, which (at best: automatically) tries to compile
the current state of the development each day over night.

« Promise: with “nightly builds’, d is ffectively limited to be smaller or equal to one day,
so the number of possible causes for not compiling should be manageable:

—+ Software Er ingas a defensive discipli inst failures and " p
o if program P always compiles, the effort for “nightly builds’” was strictly speaking wasted.
|« ifacompilationi during the project, the caused d is bounded.
: holds for on: if no is ever needed, ffort may be wasted

- 19742

Course Content (Tentative)

0

3

H

Requirements
Engineering

Capturing
Requirements
Design
Implementation

Software Project Management Lio: 226, Thy
Avch.&Design | L1 266, Mon

Software
Modeling

3 by

In Other Words

All engineering disciplines face the same questions:
« How to describs i / avoid mi lings with the customer?
» How to d ibe design ideas / avoid mi: i with the

« How to ensure that the product is built right / that the right product is built?
(—+ How to measure the quality of the product?)

properly?
At best: are there procedures which promise to systematically avoid certain mistakes or costs?

« How to schedule acti

This course is about Software Engineering, so we should discuss:
« How to describe requirements on software precisely?
= How to describe design ideas for software precisely?

« How to ensure that software is built right?
(— How to measure the quality of software?)

« How to schedule software development activities properly?

What are pr [t i id certain mistakes or costs in software development?

Software Engineeringis a young discipline: plenty of proposals for each question.
So the course will focus on the problems and discuss example proposals.

2022
Structure of Topic Areas
Example: Requirements Engineering
Vocabulary e.g. consistent,
complete, tacit, etc.
Techniques
informal
formal
23/

Excursion: Informal vs. Formal Techniques

Structure of Topic Areas

Example: Requirements Engineering, Airbag Controller

Requirement:

‘Whenever a crash is detected, the airbag has to be fired

DeveloperA Developer B

vs.
o Fixobservables: crashdetected : Time — {0,1} and fireairbag : Time — {0,1}
« Formalise requirement: o

1,1 € Time o crashdetected(t) A airbagfired(t') = ' € [t + 300 — &, + 300 + &]

— nomore i i biectively decide: satisfied yes/no,
2402

Example: Requirements Engineering

Vocabulary eg. consistent,
complete, tacit, etc.
In the course: Techniques
Use Cases informal g “Whenever a crash...”

Pattern Language eg."Always, if (crash) att...”

Decision Tables

Live Sequence Charts eg. Vit € Times

260

Structure of Topic Areas

Course Content (Tentative)

g

Capturing
Requirements
Implementation

Example: Requirements Engineering

Vocabulary e.g. consistent,
complete, tacit, etc.
Techniques
informal
semi-formal

26/02

Content

o Software, Engineering, Software Engineering
Successful Software Development
Fe working d

« unsuccessful software development exists
= common reasons for non-success

Course

|~ Content

(o topicareas.”

o structure of topic areas.”
emphasis: formal methods

relation to other courses

literature

Le Organisation

Course Software-Engineering vs. Other Courses Course Software-Engineering vs. Softwarepraktikum Literature

Thelecturer pointsout connctions to
other opic ras(eg esearch prasl,

h Agreement between Introduction’
Sy picey
(wYecoo ou ‘Fachschalt and the Scaes, Metncs, o
— — N — — . chairfor software -
engineering: — &
strongler) coupling D Software
WIS e GRSV owy between both e e, SRk
v R D o courses. v
Teonues | Techouns Tecaues Op.Sys. Networks Tecues
(o L
Infol Tech. Info et
(e
. 277, Th :
- ...more on the course homepage.
29m - 302 - 3la
Content
« Software, Engineering, Software Engineering
Successful Software Development
I working definition: success
Lo unsuccessful software development exists
. L Le' common reasons for non-success
Any Questions So Far? Course: Organisation
Course
|~ Content
© topicareas
o structure of topic areas
« emphasis: formal methods
 relation to other courses
» literature
Lt Organisation
© lectures
. i * tutorials
L * exam
E H EE :

340

Organisation: Lectures

© Homepage: http://sut.informatik.uni-freiburg.de/teaching/S§2017/sutvl
« Course language: German (since we are in an odd year)
o Script/Media:

o slides with lecture the atest
o slides with e lecture
« recording on ILIAS (max. 2 days delay (cf link on homepage)

« Schedule: topic areas & three 90 min. lectures, one 90 min. tutorial (with exceptions)

« Interaction: absence often moaned: but it takes two, so please ask/comment immediately.
* Questions/comments:

« “online”: askimmediately or in the break
) try to solve yourself
discuss with colleagues

a) Exercises: ILIAS (group) forum, contact tutor

b) Everything else: contact lecturer (cf. homepage)

orjust drop by: Building 52, Room 00-020

o “offline”:

« Break: well have a 5-10 min. break
in the middle of each lecture (from now on),
unless amajority objects

One Last Word on The Exercises. ..

ave mproved oy silsinscenfic
e g

©aly 0 0 00 rongly ©aly @f 0 0 0 0

e X =gy g

strongly
Gsagree disgree.

« Every exercise task is a tiny little scientific work!
« Basic rule for high quality submissions:
o rephrase the task in your own words,
« state your solution,
+ convince your tutor of (at best: prove) the correctness of your solution.

Organisation: Exercises & Tutorials

« Schedule/Submission: Introduction

« exercises online (homepage and ILIAS) with first lecture of a block, |

o e ion 24h before tutorial o
{usually Wednesday. 12:00, local time) 20% m s
evelopment
. submissi ht i
sally Thursday, 12:00, local time). Process
. I tolerated | |
. teams of approx. 3, clearly gi 2 FEE
h— Engineering
« Grading system: “most complicated grading system ever” i
= Admission points (good-willrating, upper bound) , |
[g tutorial’)
« Exam-like points (evilrating, ower bound)
(‘reasonable grading given students knowledge 2t tutorial’) LGP ED
20% bonus for early submission. Software
Modeling
Three groups (central assignment), hosted by tutor.
. Patterns
« Starting from di ly -
develop one good proposal together, I L6 207, The
 tutorial notes provided via ILIAS. Wrap-Up Lis: 277, Thu
350 H 36

Tell Them What You've Told Them. ..

« Basic vocabulary:
« software, engineering software engineering,
o customer, developer, user,
o successful software development

—» note: i formal y agr
« (Fun) fact: software development is not always successful

« Basic activities of (software) engineering

« gather requirements,

 design,

« implementation,

 quality assurance,

« project management

—» motivates content of the course - for the case of software
« Formal (vs. informal) methods

« avoid misunderstandings.

« enable objective, tool-based assessment
— note: stillhumans are at the heart of software engineering.

« Course content and organisation

38/n - 39m

Organisation: Exam

« Exam Admission:

Achieving 50% of the re
is sufficient for admission to exam.

10 regular admission points on sheets O and 1, and
20 regular admission points on exercise sheets 2-6

(¢ 120 regularddmission points for 100%.
=2
Cps0% -

« Exam Form:

« written exam

« date, time, place: tba

« permitted exam aids: one A4 paper (max. 21x 29.7 x 1mm) of notes, max. two sides inscribed
« scores from the exercises do not contribute to the final grade.

« example exam available on ILIAS

Any (More) Questions?

37m

400

References

4

References

Bauer, F. L. (1971). Software engineering. In IFIP Congress (1), pages 530-538.

Buschermohle, R., Eekhoff, H., and Josko, B.(2006). success - Erfolgs- und Misserfolgsfaktoren bei der
D on Hard- und i in D Technical Report VSEK/55/D.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.
1SO/IEC FDIS (2000). Information technology - Software product quality - Part 1: Quality model. 9126-12000().
1SO/IEC/IEEE (2010). Systems and software engineering - Vocabulary. 24765:2010()

Ludewig, . and Lichter, H. (2013). Software Engineering. dpunktverlag, 3. edition.

Parnas, D. L. (2011). Soft Multi-p of mul programs. In Jones, C. B.
etal, editors, Dependable and Historic Computing, volume 6875 of LNCS. pages 413-427. Springer.

42n

