—12-2017-07-03 - main

Softwaretechnik / Software-Engineering

Lecture 12: Proto-OCL,
Modularisation & Design Patterns

2017-07-03

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Topic Area Architecture & Design: Content

12 - 2017-07-03 - Sblockcontent

VL10 < Introduction and Vocabulary
Software Modelling |
(i) views and viewpoints, the 4+1 view
(i) model-driven/-based software engineering
(i) Modelling structure
a) (simplified) class diagrams
: b) (simplified) object diagrams
VL 12 ¢) (simplified) object constraint logic (OCL)
d) Unified Modelling Language (UML)

VL1

Principles of Design
() modularity, separation of concerns
(i) information hiding and data encapsulation
(i) abstract data types, object orientation
(iv) Design Patterns

VL13 « Software Modelling Il
(i) Modelling behaviour
a) communicating finite automata
b) Uppaal query language

C) basic state-machines

VL 14
: d) an outlook on hierarchical state-machines

—12-2017-07-03 - Scontent

—12-2017-07-03 - main

Content

* Proto-OCL

(= syntax, semantics,
(= Proto-OCL vs. OCL.
(= Proto-OCL vs. Software

= An outlook on UML
= Principles of (Good) Design

modularity, separation of concerns
information hiding and data encapsulation
abstract data types, object orientation

(= by example

= Architecture Patterns

(= Layered Architectures, Pipe-Filter,
Model-View-Controller.

= Design Patterns

(= Strategy, Examples

= Libraries and Frameworks

Partial vs. Complete Object Diagrams

2017-06-26

= By now we discussed “object diagram represents system state”:

{lc ' CLh 5k}, e n [5eiC] »
5c [C{pd L [P —1 p=0
1p C{pd {5k}, x 1 [23}} n=0
What about the other way round...?
= Object diagrams can be partial, e.g.
[Io:iD]] o “1c:c| [SeiC| |1D:D“

[lc:C] n [Bc:C
| |

|
| =2

— we may omit information.

Is the following object diagram partial or complete?

5¢c:C
1c:C n = p ib:D
pc=® p=0 =%
n=>0

If an object diagram
» has values for all attributes of all objects in the diagram, and

then we can uniquely reconstruct a system state [_]

3951

3/66

4/66

-12-2017-07-03 - main

—12-2017-07-03 - Scontent —

Special Case: Anonymous Objects

where

If the object diagram

&
o

ic:C| n p'
p=0C] n

X =23

[
]

is considered as complete, then it denotes the set of all system states

{lc '@ CLh {0}, ¢ @ CLh COId) Cfm), x C23))
¢ CAC), dCAD), c#lc.

Intuition: different boxes represent different objects.

4051

Content

* Proto-OCL

(= syntax, semantics,
(= Proto-OCL vs. OCL.
(= Proto-OCL vs. Software

= An outlook on UML
= Principles of (Good) Design

(= modularity, separation of concerns
(= information hiding and data encapsulation
(= abstract data types, object orientation
(= ...by example
< Architecture Patterns

(= Layered Architectures, Pipe-Filter,
Model-View-Controller.

= Design Patterns

(= Strategy, Examples

= Libraries and Frameworks

5/66

6766

-12-2017-07-03 - main

Towards Object Constraint Logic (OCL)
— “Proto-OCL” —

Motivation

12 - 2017-07-03 - Socl

[OX]

= How do | precisely, formally tell my developers that

All D-instances having a link to the same C object
should have links to the same A.

= That s, the following system state is forbidden in the software:

fA] a [iD] ¢ [:C| ¢ [:D] a [ZA

Note: formally, it is a proper system state.

= Use (Proto-)OCL: “Dear developers, please only use system states which satisfy:”

[dl [allinstancesg « [dp [allinstancesg « c(d;) = c(d2) =[—aft;) = a(dz)

1766

8/66

Constraints on System States

12 - 2017-07-03 - Socl

X :Int

= Example: for all C-instances, x should never have the value 27.

CclCallinstancesc = z(c) 8B 27

= Proto-OCL Syntax wrt. signature (T, C, V, atr, F, mth), cis a logical variable, C CCI.

F:= ¢ I TC &)

alllnstancesc : 2'¢

I
| o(F) {TC - T ifv:r Catr(C) reT &)
| o(F) i Tc - TD, ifv: Do, Catr(C)
| o(F) t1c - 2'P, ifv: D atr(C)
| f(F17"'7Fn) T XX Th 5 T, iff:Tlx---XTn_,T
()
| CACELF>, :7¢cx2"©xBr= Br—
Sl LK
= The formula above in prefix normal form: CclCalllnstancesce 8 (m(g), 27)
£ o</ I—J@M)
Cxw) .\—)[Mf
Gex) 9/66

Semantics 5 @ez) > (V=>D)

12 - 2017-07-03 - Socl

= Proto-OCL Types:
o ZME[FD(C)U{Ll}, IMEDE)U{Ll}, ZRFc[FD(CpnU {Ll}
o TIB 5 {true,false} U {1}, ZMAEHZU{l}

* Functions:
o We assume Ty given for each function symbol f (— in a minute).

= Proto-OCL Semantics (interpretation function):
o Z[cI(w,B) = B(c) (assuming B is a type-consistent valuation of the logical variables),

o ZTlalllnstancesc (&, B) z_gm) NnD(C),
S S

- I(F)®,B) = {("L@?ﬁ%@m) AMPEID.B) € DM oty - o,
e W ICFDG, B) € daw), & (TTF3G6,8))() =5) EZERY
_ et | iffBEsB)={uT Cdemie) .
* TMF)IO.B) = {J_ gtherwise (ifv: Co,1)

o IH(Fy, ..., Fr)o,B) = £ (ZE. 18, B), . . ., IEn o, B)).

true |, if ZE; (o, B[c := u]) = true forallu € T[H, [(b, B)
o I[¥Wc € Fi1 e Fo[(B,B) = false , if Z[Hq (&, B[c := u]) = false for some u € Z[H,; [(&, B)

1L , otherwise
10r66

Semantics Cont’d

12 - 2017-07-03 - Socl

= Proto-OCL is a three-valued logic: a formula evaluates to true, false, or L1

= Example: [,) : {true, false, CJ3k {true, false, [} {true,false, [}13 defined as follows:

X1 true | true | true | false | false | false 1 il 1
Xo true | false 1 true | false 1 true | false | L
A1 (X1, X2) true | false 1 false | false | false 1 false | L

We assume common logical connectives —, A, V, ... with canonical 3-valued interpretation.
= Example: +i (+,) : (Z)X (Z COG3- Z CEd

X1 +Xo Lifx; # Landxg # L
1 , otherwise

+|(X1,X2)={

We assume common arithmetic operations —, 7, *, . . .
and relation symbols >, <, <, ... with monotone 3-valued interpretation.

= And we assume the special unary function symbol isUndefined:

true ifx=1,

isUndefined ; () = {false otherwise

isUndefined ; is definite: it never yields L.
1166

Example: Evaluate Formula for System State

12 - 2017-07-03 - Socl

1c:C . C
Lo = 3 er 53 X Int
-7 Tr =
o oo 5
sCte) CclCallinstancesc = z(c) & 27

[
(o)<
= Recall prefix notation: Ccl[alllnstancesc « &(xz(c), 27)

Note: # is a binary function symbol, 27 is a 0-ary function symbol.

- Example:

I [CalCallinstancesc ® B(z(c), 27)] (o, D= true, because...

1[E(z(c),27)](0,8), B:=0d:=1c]={cB lc}

=81 (1[z(c)](0, 8), 1[27](0. B))

:E|((U(M)>(m), 271)

=B1(o(B(c))(x), 2T1)

=B (o(lc)(z), 271)

=5,(13,27) =true ...and 1¢ is the only C-object in o Z[@llInstances c [(®, #) = {1c }.

12766

More Interesting Example

1c: C n C
T |

=S pins (=13 ! H—

w3

Lcl: alllnstancesc = z(n(c)) & 27

= Similar to the previous slide, we need the value of
Ha(n(e)](o,8), 8 ={c B 1c}
= Hcl(o,8) = Ble) = 1c

= 1[n(c)](o,) = Csibce o(1[c](c,B))(n) = (B {uF by rule

ut | if ZB (b, B) € dom(c) and o(Z[B (&, B))(v) = {uF

ifv:C
L, otherwise (ifv:Co,)

IB_L(F)E@LB)={

= Hz(n(e)](o,) = Csidce [n(c)](o,) = Chyrule

o (ZIB®,B)) (v) ,ifZELY,B) € dom(o)

1 , otherwise

ID—L(F)IE,B)={

(if not v : C0’1)

-12-2017-07-03 - Socl -

13766

M’e Interesting Example

= Similar to the previous slide, we

= (o, 8) = Ble) = 1c

/IMF)%B):{i(ﬂ(v) gmw (ifv;c(N

KU/U/(B socl

13/

Object Constraint Language (OCL)

12 -2017-07-03 - Socl

OCL is the same — just with less readable (?) syntax.

Literature: (OMG, 2006; Warmer and Kleppe, 1999).

14/66

Examples (from lecture “Softwaretechnik 2008”)

12 - 2017-07-03 - Socl

duration: Time

‘TeamMember Meeting Location £
2. meetings [~ - * " g

name : String — i title : String : String 3
age : Integer | Participants * | numParticipants : Integer’ 1 e
start : Date 3

move(newStart : Date)

| @ context Meeting
e inv: self._participants->size() =
seif. numParticipants
@ context Location
e inv: name="Lobby" implies
meeting->isEmpty()

N
£
5

v Sé(-ﬁ E—/W {t@/vmam -
=9
size (f«rﬁmfmfs(m({.)) = erce, Faficd pucts (gséz/

15/66

Literature

12 -2017-07-03 - Socl

TrE OBIECT
CONSTRAINT
LANGUAGE

PRECISE MODELING WiTH UML

JOS WARMER
ANNEKE KLEPPE

I
i

BoocH
JACOBSON
RUHBAVEK

| S—

Object Constraint Language
OMG Available Specification
20

formal/06-05-01

QlnlG

Where To Put OCL Constraints?

12 - 2017-07-03 - Socl

= Notes: A UML note is a diagram element of the form

16766

Asr—

Type:d:D_*
Constraint:
forall ¢ in Allinstances_C .

r——=1
l text |

a

size(d(c))=3or
size(d(c))>=17
and size(d(c))<=21

text can principally be everything, in particular comments and constraints.

Sometimes, content is explicitly classified for clarity:

= Conventions:

AN

-
-
P

stands for

OCL:
F

[self Callinstancesc Fﬁ

17766

-12-2017-07-03 - Scontent —

—12-2017-07-03 - main

Content

* Proto-OCL

(= syntax, semantics,
(= Proto-OCL vs. OCL.
(= Proto-OCL vs. Software

= An outlook on UML
= Principles of (Good) Design

(= modularity, separation of concerns
(= information hiding and data encapsulation
(= abstract data types, object orientation
(= ...by example
< Architecture Patterns

(= Layered Architectures, Pipe-Filter,
Model-View-Controller.

= Design Patterns

(= Strategy, Examples

= Libraries and Frameworks
1866

Putting It All Together

19/66

Modelling Structure with Class Diagrams

12 - 2017-07-03 - Salltogether

Definition. Software is a finite description S of a (possibly infinite) set (S of
(finite or infinite) computation paths of the form g, 3, (< 2, g, -+ - Where

= 0 31 i [Ny, is called state (or configuration), and

e aj CA i [Ny, is called action (or event).

The (possibly partial) function [JCIS B [SICs called interpretation of S.

The set of states X could be the set of system states as defined by a class diagram, e.g.

Z:Eg S x:InS

A corresponding computation path of a software S could be

[27c:C|] L [27c:C
Ze - =
Co=0] |

Il
—

If a requirement is formalised by the Proto-OCL constraint
F = CclCalllnstancesc » z(c) < 4

then S does not satisfy the requirement.
20766

More General: Software vs. Proto-OCL

12 - 2017-07-03 - Salltogether

Let S be an object system signature and D a structure.

Let S be a software with

- states¥® =B, and
= computation paths [S].

Let F" be a Proto-OCL constraintover S..

We say [S] satisfies F', denoted by [S] |= F, if and only if for all

1 a>

0g =™ 01 —> 02" EB]]

and all ¢ [Ny,
1[F](oi, OJ= true.

We say [S] does not satisfy F', denoted by [S] B F, if and only if there exists

oy a

o — 01 —% 0y [J¥] and i [Ny, such that I [F'](oi, 0= false.

Note: ~([S] E F') does notimply [S] |= F.
2l/66

Tell Them What You’ve Told Them. . .

-12-2017-07-03 - Sttwytt -

—12-2017-07-03 - Scontent —

Content

Class Diagrams can be used to graphically

= visualise code,
= define an object system structure S.

An Object System Structure S (together with a structure D)

= defines a set of system states X2 .

A System State ¢ [X12

= can be visualised by an object diagram.

Proto-OCL constraints can be evaluated on system states.

A software over X2 satisfies a Proto-OCL constraint F if and only
if F" evaluates to true in all system states of all the software's com-
putation paths.

* Proto-OCL

(= syntax, semantics,
(= Proto-OCL vs. OCL.
(= Proto-OCL vs. Software

—AnroutioekomUML
= Principles of (Good) Design

(= modularity, separation of concerns
(= information hiding and data encapsulation
(= abstract data types, object orientation
(= ...by example
< Architecture Patterns

(= Layered Architectures, Pipe-Filter,
Model-View-Controller.

= Design Patterns

(= Strategy, Examples

= Libraries and Frameworks

22/66

23/66

—12-2017-07-03 - main

—12-2017-07-03 - main

Once Again, Please

0-2017-06-22

Interface

c
5
%)

consists of 1 or more has

System ————————————— Component Component Interface

« | ©
Software System ——————— Software Component
| may be a
Module

software architecture — The software architecture of a program or computing system is the
structure or structures of the system which comprise software elements, the externally visi-
ble properties of those elements, and the relationships among them. (Bass etal, 2003)

Software Architecture
| 2
= is the result of .
Architecture ————————————— Design

is described by

| Architectural Description

3960

Goals and Relevance of Design

o The structure of something is the set of relations between its parts.
» Something not built from (recognisable) parts is called unstructured.

Design. ..
(i) structures a system into W@g units (yields software architecture),

(i) determines the approach for realising the required software,

(iiiy provides hierarchical structuring into a r/n\a/n\a/gggt\),l\e number of units
at each hierarchy level.

Oversimplified process model “Design”:

i o -
m spec. m

designer programmer
design implementation

40r60

24/66

25/66

—12-2017-07-03 — main —

—12-2017-07-03 — main —

Views and Their Representation ot of st

11-2017-06-26 - Sswmodel

(Ex Ay cawﬁ/tz%w
'S

Cﬂ‘,.
A (dog- i

Analyst

T
|

13/51

Principles of (Architectural) Design

26/66

27766

Overview

1) Modularisation
= split software into units / components of manageable size
= provide well-defined interface

2.) Separation of Concerns

= each component should be responsible for a particular area of tasks
= group data and operation on that data; functional aspects; functional vs. technical;
functionality and interaction
3.) Information Hiding
= the “need to know principle” / information hiding
= users (e.g. other developers) need not necessarily know the algorithm and helper data
which realise the components interface
4)) Data Encapsulation

- offer operations to access component data,
instead of accessing data (variables, files, etc.) directly

- many programming languages and systems offer means to enforce (some of) these
principles technically; use these means.

?\1

28/66

1.) Modularisation

modular decomposition — The process of breaking a system into compo-
nents to facilitate design and development; an element of modular program-
ming. IEEE 610.12 (1990)

modaularity — The degree to which a system or computer program is com-
posed of discrete components such that a change to one component has
minimal impact on other components. IEEE 610.12 (1990)

= So, modularity is a property of an architecture.
= Goals of modular decomposition:

o The structure of each module should be simple and easily comprehensible.

o The implementation of a module should be exchangeable;
information on the implementation of other modules should not be necessary.
The other modules should not be affected by implementation exchanges.

o Modules should be designed such that expected changes
do not require madifications of the module interface.

o Bigger changes should be the result of a set of minor changes.
As long as the interface does not change,
it should be possible to test old and new versions of a module together.

I
~

29/66

2.) Separation of Concerns

= Separation of concerns is a fundamental principle in software engineering:

= each component should be responsible for a particular area of tasks,

= components which try to cover different task areas tend to be unnecessarily complex,
thus hard to understand and maintain.

= Criteria for separation/grouping:

= inobject oriented design, data and = assign flexible or variable
operations on that data are grouped functionality to own components.
into classes, Example: different networking technology
= sometimes, functional aspects (wireless, etc)

(features) like printing are realised as

separate components, = assign functionality which is expected

to need extensions or changes later

= separate functional and technical to own components.
components,
Example: logical flow of (logical) messages = separate system functionality and
in a communication protocol (functional) interaction
vs. exchange of (physical) messages using Example: most prominently graphical
a certain technology (technical). user interfaces (GUI), also file input/output

?\1

30re66

3.) Information Hiding

= By now, we only discussed the grouping of data and operations.
One should also consider accessibility.
= The “need to know principle” is called information hiding in SW engineering. (Parnas, 1972)

information hiding— A software development technique in which each module’s inter-
faces reveal as little as possible about the module’s inner workings, and other modules
are prevented from using information about the module that is not in the module's in-
terface specification. IEEE 610.12 (1990)

< Note: what is hidden is information which other components need not know
(e.g., how data is stored and accessed, how operations are implemented).

In other words: information hiding is about making explicit for one component
which data or operations other components may use of this component.

= Advantages / goals:

o Hidden solutions may be changed without other components noticing,
as long as the visible behaviour stays the same (e.g. the employed sorting algorithm).

IOW: other components cannot (unintentionally) depend on details they are not supposed to.
o Components can be verified / validated in isolation.

I
~

3lse6

4.) Data Encapsulation

Sdesprinc

2017-07-03

12

= Similar direction: data encapsulation (examples later).

= Do not access data (variables, files, etc.) directly where needed, but encapsulate the data in
a component which offers operations to access (read, write, etc.) the data.

Real-World Example: Users do not write to bank accounts directly, only bank clerks do.

4y Vector:insert - C++ R.. % | &

(-_.

std:

s cplusplus. co

B¢ wBa ¥ =

public member function

:vector::i

<vector>

nsert

cro8|[cer11] @

iterator insert (iterator position, const value type val);

void insert (iterator position, size type n. const value_types val)
tenplate <class InputIterators

void insert (iterator position, InputIterator first, InputIterator last);

The

val

Insert elements

vactor is extended by inserting new elements befare the element at the spacified position, effectively

increasing the container size by the number of elements inserted.

This causes an automatic reallocation of the allocated storage space if -and only if- the new vector size surpasses
the current vector capacity.

Because vectors use an array as their underlying storage, inserting elements in positions other than the vector
end causes the container to relocate all the elements that were after position to their new positions, This is
generally an inefficient operation compared to the ane performed for the same operation by other kinds of
sequence containers (such as list or forward_list).

The parameters determine how many elements are inserted and to which values they are initialized:

[&. Parameters

position

Position in the vector where the naw elements are inserted,
iteratoris a member type, defined as a random access iterator type that points to elements.

Value to be copied (or moved) to the inserted slements
Member type value_type is the type of the elements in the container, defined in deque as an alias of its first
\

famniata narsmatar (T

4.) Data Encapsulation

2017-07-03 - Sdesprinc

12

= Similar direction: data encapsulation (examples later).

3266

= Do not access data (variables, files, etc.) directly where needed, but encapsulate the data in
a component which offers operations to access (read, write, etc.) the data.

Real-World Example: Users do not write to bank accounts directly, only bank clerks do.

4y Vector:insert - C++ R.. % | &

€

a] & 2

rrlienlie ramirafar riincart. e BIRYC] Eoa -] n)
‘s vectoriinsert - C++ R,
&) wwwcplusplus.com/r Jvectorfinsert, el &Ba ¥ =

@ com plexity
Linear on the number of elements inserted (copy/move construction) plus the number of elements after position
(moving).

Additionally, if InputIterator in the range imsert (3) is not at least of a forward iterator category (i.e,, just an input
iterator) the new capacity cannot be determined befarehand and the insertion incurs in additional logarithmic
complexity in size (reallocations)

1f a reallocation happens, the reallocation is itself up to linear in the entire size at the moment of the reallocation.

&% Iterator validity

If a reallocation happens, all iterators, pointers and references related to the container are invalidated.
Otherwise, anly those pointing to position and beyond are invalidated, with all iterators, pointers and references to
elements befora position guaranteed to keep referring to the same elements they were referring to before the call

Data races
All copied elements are accessed
The container is modified.
If a reallocation happens, all contained elements are modified.
Otherwise, none of the elements before position is accessed, and concurrently accessing or modifying them is safe
(although see rterator validity ahave).

Exception safety
If the operation inserts a single element at the end, and no reallocations happen, there are no changes in the
container in case of exception (strong guarantee), In case of reallocations, the strong guarantee is also given in
this case if the type of the elements is either copyable or no-throw moveable
Otherwise, the container is guaranteed to end in a valid state (basic guarantee)
1f allocator_traits::construct is not supported with the appropriate arguments for the element constructians, or if

3266

4.) Data Encapsulation

= Similar direction: data encapsulation (examples later).

= Do not access data (variables, files, etc.) directly where needed, but encapsulate the data in
a component which offers operations to access (read, write, etc.) the data.

Real-World Example: Users do not write to bank accounts directly, only bank clerks do.

= Information hiding and data encapsulation — when enforced technically (examples later) —
usually of worse efficiency.
o Itis more efficient to read a component’s data directly
than calling an operation to provide the value: there is an overhead of one operation call.
o Knowing how a component works internally may enable more efficient operation.

Example: if a sequence of data items is stored as a singly-linked list, accessing the data items in
list-order may be more efficient than accessing them in reverse order by position.

Good modules give usage hints in their documentation (e.g. C++ standard library).

Example: if an implementation stores intermediate results at a certain place, it may be tempting
to “quickly” read that place when the intermediate results is needed in a different context.

— maintenance nightmare — If the result is needed in another context,
add a corresponding operation explicitly to the interface.

Yet with today’s hardware and programming languages, this is hardly an issue any more;
at the time of (Parnas, 1972), it clearly was.

?\1

3266

A Classification of Modules (Nagl, 1990)

= functional modules

e group computations which belong together logically,

« do not have “memory” or state, that is, behaviour of offered functionality does not depend on prior
program evolution,

o Examples: mathematical functions, transformations

» data object modules

o realise encapsulation of data,

» adata module hides kind and structure of data, interface offers operations to manipulate
encapsulated data

o Examples: modules encapsulating global configuration data, databases

- data type modules

e implement a user-defined data type in form of an abstract data type (ADT)
o allows to create and use as many exemplars of the data type
o Example: game object

= In an object-oriented design,

o classes are data type modules,
o data object modules correspond to classes offering only class methods or singletons (— later),
o functional modules occur seldom, one example is Javas class Math.

I
~

33/66

-12-2017-07-03 - Scontent —

—12-2017-07-03 - main

Content

* Proto-OCL

(= syntax, semantics,
(= Proto-OCL vs. OCL.
(= Proto-OCL vs. Software

= An outlook on UML
= Principles of (Good) Design

(= modularity, separation of concerns
(= information hiding and data encapsulation
(= abstract data types, object orientation
(= ...by example
< Architecture Patterns

(= Layered Architectures, Pipe-Filter,
Model-View-Controller.

= Design Patterns

(= Strategy, Examples

= Libraries and Frameworks
3466

Architecture Patterns

35/66

Introduction

12 - 2017-07-03 - Sarch

= Over decades of software engineering,
many clever, proved and tested designs
of solutions for particular problems emerged.

= Question: can we generalise, document and re-use these designs?

- Goals:

« “don’t re-invent the wheel”,
= benefit from “clever”, from “proven and tested”, and from “solution”

architectural pattern — An architectural pattern expresses a fundamental
structural organization schema for software systems.

It provides a set of predefined subsystems, specifies their responsibilities, and
includes rules and guidelines for organizing the relationships between them.

Buschmann et al. (1996)

36766

Introduction Cont’d

12 - 2017-07-03 - Sarch

architectural pattern — An architectural pattern expresses a fundamental
structural organization schema for software systems.

It provides a set of predefined subsystems, specifies their responsibilities, and
includes rules and guidelines for organizing the relationships between them.

Buschmann et al. (1996)

= Using an architectural pattern

= implies certain characteristics or properties of the software
(construction, extendibility, communication, dependencies, etc.),

= determines structures on a high level of the architecture,
thus is typically a central and fundamental design decision.

= The information that (where, how, ...) a well-known architecture / design pattern
is used in a given software can

= make comprehension and maintenance significantly easier,
< avoid errors.

37s66

-12-2017-07-03 - main

Layered Architectures

3866

Example: Layered Architectures

12 - 2017-07-03 - Slayered

e (Zullighoven, 2005):
A layer whose components only interact with components
of their direct neighbour layers is called protocol-based layer.

A protocol-based layer hides all layers beneath it
and defines a protocol which is (only) used by the layers directly above.

= Example: The ISO/OSI reference model.

data

7. Application 7. Application

6. Presentation 6. Presentation

5. Session 5. Session

4. Transport 4. Transport

packets

3. Network 3. Network

ki
ik

frames

2. Data link 2. Data link

bits

1. Physical 1. Physical

39/66

Example: Layered Architectures Cont’d

- Object-oriented layer: interacts with layers directly (and possibly further) above and below.
< Rules: the components of a layer may use

o only components of the protocol-based layer directly beneath, or
o all components of layers further beneath.

GNOME etc.
Applications

-12-2017-07-03 - Slayered —

40s66

Example: Layered Architectures Cont’d

= Object-oriented layer: interacts with layers directly (and possibly further) above and below.
< Rules: the components of a layer may use

o only components of the protocol-based layer directly beneath, or
o all components of layers further beneath.

o Hello World

Applications

-12-2017-07-03 - Slayered —

40r66

Example: Three-Tier Architecture

= presentation layer (or tier):

. . . . Desktop Host
user interface; presents information obtained from P

the logic layer to the user, controls interaction with
the user, i.e. requests actions at the logic layer ac-
cording to user inputs.]

presentation tier

= logic layer: Application Server

core system functionality; layer is designed without
information about the presentation layer, may only
read/write data according to data layer interface. | data tier |
I
L]

| (business) logic tier |

- data layer:

persistent data storage; hides information about Database Server
how data is organised, read, and written, offers par- ereszaces -
ticular chunks of information in a form useful for the]
logic layer,.

(Ludewig and Lichter, 2013)

= Examples: Web-shop, business software (enterprise resource planning), etc.

12 - 2017-07-03 - Slayered

41/66

Layered Architectures: Discussion

P—
:
[mm] [oem] [Tk |
¥ ackets T
; —
2 Datalink fomes 2 Datalink
| |

< Advantages:

protocol-based:
only neighouring layers are coupled, i.e. components of these layers interact,

coupling is low, data usually encapsulated,

changes have local effect (only neighbouring layers affected),

protocol-based: distributed implementation often easy.

- Disadvantages:

= performance (as usual) — nowadays often not a problem.

°
o
)

12 -2017-

42/66

—12-2017-07-03 - main

Example: Pipe-Filter

—12-2017-07-03 - Spipe -

Example: Compiler

Pipe-Filter

43/66

Objectcode

ASCII Tokens AST dAST
L lexical analysis syntactical analysis l semantical
(lexer) (parser) analysis
1 T T T
Sourcecode
L e e e e e - — = e — = L 1

code |
generation

Errormessages

44766

Example: Pipe-Filter

Example: Compiler

ASCII Tokens AST dAST Objectcode
l lexical analysis l syntactical analysis l semantical l code |
Q (lexer) > (parser) analysis > generation
T T T T
Sourcecode [\ \ \ O
Lo e e e e e e — L L Il
Errormessages

Example: UNIX Pipes
Is -1 | grep Sarch.tex | awk *{ print $5 }’

- Disadvantages:

= if the filters use a common data exchange format, all filters may need changes
if the format is changed, or need to employ (costly) conversions.

« filters do not use global data, in particular not to handle error conditions.

44766

~12-2017-07-03 - Spipe -

Model-View-Controller

2017-07-03 - main

45/66

_12-

Example: Model-View-Controller

uses _ -~ ~_ sees .
-7 RN \-
- ~
“ change of >

visualisation . w0

controller R view !
notification of S

updates /
manipulation aci:jess to
ata
of data model

—12-2017-07-03 - Smvc —

46/66

Example: Model-View-Controller

uses -~ ~ _ sees
- ~
- ~
~ - A
- change of ~ wvieed
visualisation . .
controller o T view 3
notification of 8
updates /]
manipulation aczess to
ata
of data model

_fle_Edt_View pocument ools Window_Help

=ML

oftware"
] Some Empirical

O"\l (] Characteristics of
E] Projectsuccess. 5 o
£] Deadines, Projsct oftwaretechnik / Software=Engineering

=] Course Goals and
£] Course Goals
=§] A Glimpse of Formal

] Formal Methods

&] Formal, Rigorous,

§] Software, formally

T) —

Lecture 1: Introduction

] Example:
] Software 2015-04-20
£ Bxample:
] Formal Software
] Literature

B Lterature Prof. Dr. Andreas Podelski, Dr. Bernd Westphd

Albert-Ludwigs-Universitst Freiburg

5] Questions and
[Eam

] Exercises &
] Eveluation of the

] References
] References

—12-2017-07-03 - Smvc —

46/66

Example: Model-View-Controller

—12-2017-07-03 - Smvc —

—12-2017-07-03 — main —

change of
visualisation
controller [
notification of
updates /
manipulation
of data

= Advantages:

model

o one model can serve multiple view/controller pairs;

o view/controller pairs can be
added and removed at runtime;

o model visualisation always
up-to-date in all views;

o distributed implementation (more or less) easily.

Disadvantages:

view

access to
data

, CC-BY-SA-25

Softwaretechnik / SofWareSENgIEETng

Lecture 1: Introduction

Prof. Dr. Andeess Podet,Dr. Bernd Westphal

- if the view needs a lot of data, updating the view can be inefficient.

Design Patterns

46/66

47766

Design Patterns

12 - 2017-07-03 - Sdespat

< In asense the same as architectural patterns, but on a lower scale.
= Often traced back to (Alexander et al., 1977; Alexander, 1979).

John Viissides:

| 1 5
Mmoo Design Patterns
ttel'ﬂ ﬂg“age Elements of Reusable
Towns ‘Buildings Construction Object-Oriented.Software
Erich Gammaf 3
Richard Helm
‘ Ralph Jolinson

Christopher Alexander ‘
Sara Ishikawa - Murray Silverstein
Max Jacobson - Ingrid Fiksdahl-King
Shlomo Angel

ki

Design patterns ... are descriptions of communicating objects and classes that are cus-
tomized to solve a general design problem in a particular context.

A design pattern names, abstracts, and identifies the key aspects of a common design
structure that make it useful for creating a reusable object-oriented design.

(Gamma et al., 1995)

48/66

Tell Them What You’ve Told Them. . .

—12-2017-07-03 - Sttwytt2 —

Architecture & Design Patterns

o allow re-use of practice-proven designs,
o promise easier comprehension and maintenance.

Notable Architecture Patterns

e Layered Architecture,
o Pipe-Filter,
o Model-View-Controller.

= Design Patterns: read (Gamma et al., 1995)

Rule-of-thumb:

e library modules are called from user-code,
o framework modules call user-code.

6l/66

—12-2017-07-03 — main —

References

62/66

References

—12-2017-07-03 — main —

Alexander, C. (1979). The Timeless Way of Building. Oxford University Press.
Alexander, C,, Ishikawa, S., and Silverstein, M. (1977). A Pattern Language — Towns, Buildings, Construction. Oxford University Press.
Booch, G. (1993). Object-oriented Analysis and Design with Applications. Prentice-Hall.

Buschmann, F,, Meunier, R., Rohnert, H., Sommerlad, E., and Stal, M. (1996). Pattern-Oriented Software Architecture — A System of Patterns. John Wiley &
sSons.

Dobing, B. and Parsons, J. (2006). How UML is used. Communications of the ACM, 49(5):109-114.
Gamma, E., Helm, R., lohnsson, R., and Vlissides, J. (1995). Design Patterns — Elements of Reusable Object-Oriented Software. Addison-Wesley.
Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of Computer Programming, 8(3):231-274.

Harel, D., Lachover, H,, et al. (1990). Statemate: A working environment for the development of complex reactive systems. |EEE Transactions on
Software Engineering, 16(4):403-414.

IEEE (1990). |EEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.

Jacobson, I., Christerson, M., and Jonsson, P. (1992). Object-Oriented Software Engineering - A Use Case Driven Approach. Addison-Wesley.
JHotDraw (2007). http://www. jhotdraw.org.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Nagl, M. (1990). Softwaretechnik: Methodisches Programmieren im GroBen. Springer-Verlag.

OMG (2006). Object Constraint Language, version 2.0. Technical Report formal/06-05-01.

OMG (2007). Unified modeling language: Superstructure, version 2.1.2. Technical Report formal/07-11-02.

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules. Commun. ACM, 15(12):1053-1058.

Rumbaugh, J.,, Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. (1990). Object-Oriented Modeling and Design. Prentice Hall.

Warmer, J. and Kleppe, A. (1999). The Object Constraint Language. Addison-Wesley.

Ziillighoven, H. (2005). Object-Oriented Construction Handbook - Developing Application-Oriented Software with the Tools and Materials Approach.
dpunkt.verlag/Morgan Kaufmann.

63/66

Content

-12-2017-07-03 - Scontent —

* Proto-OCL

(= syntax, semantics,
(= Proto-OCL vs. OCL.
(= Proto-OCL vs. Software

= An outlook on UML
= Principles of (Good) Design

(= modularity, separation of concerns
(= information hiding and data encapsulation
(= abstract data types, object orientation
(= ...by example
< Architecture Patterns

(= Layered Architectures, Pipe-Filter,
Model-View-Controller.

= Design Patterns

(= Strategy, Examples

= Libraries and Frameworks
64/66

A Brief History of the Unified Modelling Language (UML)

= Boxes/lines and finite automata are used to visualise software for ages.

= 1970’s, Software Crisis™
— Idea: learn from engineering disciplines to handle growing complexity.

Modelling languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

e Mid 1980's: Statecharts (Harel, 1987), StateMate™ (Harel et al., 1990)

o Early 1990’s, advent of Object-Oriented-Analysis/Design/Programming
— Inflation of notations and methods, most prominent:

12 - 2017-07-03 - Sumloutlook

65/66

A Brief History of the Unified Modelling Language (UML)

12 - 2017-07-03 - Sumloutlook

= Boxes/lines and finite automata are used to visualise software for ages.

= 1970’s, Software Crisis™

—Idea: learn from engineering disciplines to handle growing complexity.
Modelling languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

e Mid 1980's: Statecharts (Harel, 1987), StateMate™ /'

o Early 1990’s, advent of Object-Oriented-Analysis/ | o.cin

— Inflation of notations and methods, most promin

e Object-Modeling Technique (OMT)
(Rumbaugh et al., 1990)

/N Genoraizaton /ihartenc List

$ Class operation / Class aitibute Te——
italic Abstract class / Abstract operation

inseri(int, Object) - void

header

$MAX_SIZE ! int = 100

Multipicity - one pelin);Otpet
8IS t
————(Multpiciy optional pestegen
————@ Multipicity - many
——<> ngarsgation
next LinkedList ArrayList &
sty sizeint=0 elements ; Array E]

next: Entry

add(Object) - void insert(int, Object) : void

insert(int, Object) - void getlint) - Object ¢
get(int) Object getSize) - int e
getSize) : int $listToAmay(List) Array | <

add{Object void

Object

o4

[Stop)

Sauiaior L) Simulator "\ [Deta reauested] Log retreval
ronni paused oo
ing, Dnpavsel o wait it fiush

{Continue]

A Brief History of the Unified Modelling Language (UML)

12 - 2017-07-03 - Sumloutlook

= Boxes/lines and finite automata are used to visualise software for ages.

= 1970’s, Software Crisis™

— Idea: learn from engineering disciplines to handle growing complexity.
Modelling languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

e Mid 1980's: Statecharts (Harel, 1987), StateMate™ (Harel et al., 1990)

o Early 1990’s, advent of Object-Oriented-Analysis/Design/Programming
— Inflation of notations and methods, m~~* ~+~in~= >

e Object-Modeling Technique (OMT)
(Rumbaugh et al., 1990)

e Booch Method and Notation
(Booch, 1993)

. E S S
. \ b
\ | KlasseP !
i KlasseD) / i
' = -
e = 2 S ~
\ 5 - |, i
) KasseA 17~ [o ~ G Klasse P |
: W [¥ \ ooy —sus a
- — ~ <y KlasseB i 1 Klasse G !
e — JI "—— - ‘I
/ ~ ~ -
i T _ LA W Abstrakte Klasse
\ t: ——— Assoziation
- Vererbung

"~ Eigentum
D— Verwendung

65/66

A Brief History of the Unified Modelling Language (UML)

= Boxes/lines and finite automata are used to visualise software for ages.

= 1970’s, Software Crisis™
—Idea: learn from engineering disciplines to handle growing complexity.

Modelling languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams
e Mid 1980's: Statecharts (Harel, 1987), StateMate™ (Harel et al., 1990)

o Early 1990’s, advent of Object-Oriented-Analysis/Design/Programming
— Inflation of notations and methods, most prominent:

e Object-Modeling Technique (OMT) use case model
(Rumbaugh et al., 1990) —

e Booch Method and Notation —
(Booch, 1993)

realized by

e Object-Oriented Software Engineering (OOSE) may be expressedin torfns of
(Jacobson et al., 1992)

structyfed by implemented by

Each “persuasion” selling books, tools, seminars... 0 o i ‘
© ﬁ 55

3
8 domain analysis design implementation testing
é object model model model model
< model
Q
N
65766

A Brief History of the Unified Modelling Language (UML)

Boxes/lines and finite automata are used to visualise software for ages.

1970’s, Software Crisis™
— Idea: learn from engineering disciplines to handle growing complexity.

Modelling languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams
e Mid 1980's: Statecharts (Harel, 1987), StateMate™ (Harel et al., 1990)

o Early 1990’s, advent of Object-Oriented-Analysis/Design/Programming
— Inflation of notations and methods, most prominent:

e Object-Modeling Technique (OMT)
(Rumbaugh et al., 1990)

e Booch Method and Notation
(Booch, 1993)

e Object-Oriented Software Engineering (OOSE)
(Jacobson et al., 1992)

Each “persuasion” selling books, tools, seminars...

Late 1990’s: joint effort of “the three amigos” UML O.x and 1.x

Standards published by Object Management Group (OMG), “international, open membership,
not-for-profit computer industry consortium” Much criticised for lack of formality.

e Since 2005: UML 2.x, split into infra- and superstructure documents.

12 - 2017-07-03 - Sumloutlook

65/66

UML Overview (oma, 2007, 684)

5
3
@
Q
s
Q
3
<
o

OCL

JAY
Structure Behavior
Diagram Diagram
A} Y
I [
' Component Object Activity Use Case State Machine
Class Diagram ‘ Diagram ‘ Diagram Diagram Diagram Diagram
cs‘i'ﬁ.'l?fy“: Deployment Package Interaction
P Diagram Diagram Diagram
T
sequence imteraction
Diagram verview
Diagram
Communication Timing
Diagram Diagram

Figure A.5 - The taxonomy of structure and behavior diagram

l Dobing and Parsons (2006)]

66/66

