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• Introduction and Vocabulary
• Software Modelling I

(i) views and viewpoints, the 4+1 view
(ii) model-driven/-based software engineering
(iii) Modelling structure

a) (simplified) class diagrams
b) (simplified) object diagrams
c) (simplified) object constraint logic (OCL)
d) Unified Modelling Language (UML)

• Principles of Design
(i) modularity, separation of concerns
(ii) information hiding and data encapsulation
(iii) abstract data types, object orientation
(iv) Design Patterns

• Software Modelling II

(i) Modelling behaviour

a) communicating finite automata
b) Uppaal query language
c) basic state-machines
d) an outlook on hierarchical state-machines

VL 10

...

VL 11
...

VL 12

...

VL 13

...

VL 14...
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• Proto-OCL

• syntax, semantics,
• Proto-OCL vs. OCL.
• Proto-OCL vs. Software

• An outlook on UML

• Principles of (Good) Design

• modularity, separation of concerns
• information hiding and data encapsulation
• abstract data types, object orientation
• . . .by example

• Architecture Patterns

• Layered Architectures, Pipe-Filter,
Model-View-Controller.

• Design Patterns

• Strategy, Examples

• Libraries and Frameworks
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Partial vs. Complete Object Diagrams
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• By now we discussed “object diagram represents system state”:

{1C 7� {p 7� �, n 7� {5C}},
5C 7� {p 7� �, n 7� �},
1D 7� {p 7� {5C}, x 7� 23}}

� 1C : C
p = �

5C : C
p = �

n = �

1D : D
x = 23

n p

What about the other way round. . . ?

• Object diagrams can be partial, e.g.

1C : C 5C : C 1D : D
x = 23

n or 1C : C 5C : C 1D : D

� we may omit information.

• Is the following object diagram partial or complete?

1C : C
p = �

5C : C
p = �

n = �

1D : D
x = 23

n p

• If an object diagram

• has values for all attributes of all objects in the diagram, and
• if we say that it is meant to be complete

then we can uniquely reconstruct a system state �.
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Special Case: Anonymous Objects
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If the object diagram

1C : C
p = �

: C
p = �
n = �

: D
x = 23

n p

is considered as complete, then it denotes the set of all system states

{1C 7� {p 7� �, n 7� {c}}}, c 7� {p 7� �, n 7� �}, d 7� {p 7� {c}, x 7� 23}}

where c � D(C), d � D(D), c 6= 1C .

Intuition: different boxes represent different objects.
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• Proto-OCL

• syntax, semantics,
• Proto-OCL vs. OCL.
• Proto-OCL vs. Software

• An outlook on UML

• Principles of (Good) Design

• modularity, separation of concerns
• information hiding and data encapsulation
• abstract data types, object orientation
• . . .by example

• Architecture Patterns

• Layered Architectures, Pipe-Filter,
Model-View-Controller.

• Design Patterns

• Strategy, Examples

• Libraries and Frameworks
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Motivation
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C

D A

c 0,1

a

0,1

• How do I precisely, formally tell my developers that

All D-instances having a link to the same C object
should have links to the same A.

• That is, the following system state is forbidden in the software:

: A : D : C : D : Aa c c a

Note: formally, it is a proper system state.

• Use (Proto-)OCL: “Dear developers, please only use system states which satisfy:”

∀ d1 ∈ allInstancesC • ∀ d2 ∈ allInstancesC • c(d1) = c(d2) =⇒ a(d1) = a(d2)
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C
x : Int

• Example: for all C-instances, x should never have the value 27.

∀ c ∈ allInstancesC • x(c) 6= 27

• Proto-OCL Syntax wrt. signature (T,C, V, atr , F,mth ), c is a logical variable, C ∈ C :

F ::= c : τC

| allInstancesC : 2τC

| v(F ) : τC → τ⊥, if v : τ ∈ atr(C)

| v(F ) : τC → τD, if v : D0,1 ∈ atr(C)

| v(F ) : τC → 2τD , if v : D∗ ∈ atr(C)

| f(F1, . . . , Fn) : τ1 × · · · × τn → τ, if f : τ1 × · · · × τn → τ

| ∀ c ∈ F1 • F2 : τC × 2τC × B⊥ → B⊥

• The formula above in prefix normal form: ∀ c ∈ allInstancesC• 6= (x(c), 27)

Semantics
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• Proto-OCL Types:

• IJτCK = D(C) ∪̇ {⊥}, IJτ⊥K = D(τ) ∪̇ {⊥}, IJ2τC K = D(C∗) ∪̇ {⊥}

• IJB⊥K = {true, false} ∪̇ {⊥}, IJZ⊥K = Z ∪̇ {⊥}

• Functions:

• We assume fI given for each function symbol f (→ in a minute).

• Proto-OCL Semantics (interpretation function):

• IJcK(σ, β) = β(c) (assuming β is a type-consistent valuation of the logical variables),

• IJallInstancesCK(σ, β) = dom(σ) ∩ D(C),

• IJv(F )K(σ, β) =

{

σ (IJF K(σ, β)) (v) , if IJF K(σ, β) ∈ dom(σ)
⊥ , otherwise

(if not v : C0,1)

• IJv(F )K(σ, β) =

{

σ(u′)(v) , if IJF K(σ, β) = {u′} ⊆ dom(σ)
⊥ , otherwise

(if v : C0,1)

• IJf(F1, . . . , Fn)K(σ, β) = fI(IJF1K(σ, β), . . . , IJFnK(σ, β)),

• IJ∀ c ∈ F1 • F2K(σ, β) =











true , if IJF2K(σ, β[c := u]) = true for all u ∈ IJF1K(σ, β)
false , if IJF2K(σ, β[c := u]) = false for some u ∈ IJF1K(σ, β)
⊥ , otherwise



Semantics Cont’d
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• Proto-OCL is a three-valued logic: a formula evaluates to true, false, or ⊥.

• Example: ∧I(·, ·) : {true, false,⊥} × {true, false,⊥} → {true, false,⊥} is defined as follows:

x1 true true true false false false ⊥ ⊥ ⊥
x2 true false ⊥ true false ⊥ true false ⊥
∧I(x1, x2) true false ⊥ false false false ⊥ false ⊥

We assume common logical connectives ¬,∧,∨, . . . with canonical 3-valued interpretation.

• Example: +I(·, ·) : (Z ∪̇ {⊥}) × (Z ∪̇ {⊥}) → Z ∪̇ {⊥}

+I(x1, x2) =

{

x1 + x2 , if x1 6= ⊥ and x2 6= ⊥

⊥ , otherwise

We assume common arithmetic operations −, /, ∗, . . .
and relation symbols >, <,≤, . . . with monotone 3-valued interpretation.

• And we assume the special unary function symbol isUndefined :

isUndefinedI(x) =

{

true , if x = ⊥,
false , otherwise

isUndefinedI is definite: it never yields ⊥.

Example: Evaluate Formula for System State
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σ :
1C : C
x = 13

C
x : Int

∀ c ∈ allInstancesC • x(c) 6= 27

• Recall prefix notation: ∀ c ∈ allInstancesC • 6=(x(c), 27)

Note: 6= is a binary function symbol, 27 is a 0-ary function symbol.

• Example:

IJ∀ c ∈ allInstancesC • 6=(x(c), 27)K(σ, ∅) = true, because. . .

IJ 6=(x(c), 27)K(σ, β), β := ∅[c := 1C ] = {c 7→ 1C}

= 6=I( IJx(c)K(σ, β), IJ27K(σ, β) )

= 6=I( σ( IJcK(σ, β) )(x), 27I )

= 6=I( σ( β(c) )(x), 27I )

= 6=I( σ( 1C )(x), 27I )

= 6=I( 13, 27 ) = true . . . and 1C is the only C-object in σ: IJallInstancesCK(σ, ∅) = {1C}.
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σ :
1C : C

x = 13
|

n C
x : Int n

0..1

∀ c : allInstancesC • x(n(c)) 6= 27

• Similar to the previous slide, we need the value of

IJx(n(c))K(σ, β), β = {c 7→ 1C}

• IJcK(σ, β) = β(c) = 1C

• IJn(c)K(σ, β) = ⊥ since σ( IJcK(σ, β) )(n) = ∅ 6= {u′} by rule

IJv(F )K(σ, β) =

{

u′ , if IJF K(σ, β) ∈ dom(σ) and σ(IJF K(σ, β))(v) = {u′}

⊥ , otherwise
(if v : C0,1)

• IJx(n(c))K(σ, β) = ⊥ since IJn(c)K(σ, β) = ⊥ by rule

IJv(F )K(σ, β) =

{

σ (IJF K(σ, β)) (v) , if IJF K(σ, β) ∈ dom(σ)
⊥ , otherwise

(if not v : C0,1)
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σ :
1C : C
x = 13

|
n C

x : Int n
0..1

∀ c : C • x(n(c)) 6= 27

• Similar to the previous slide, we need the value of

σ ( σ( IJcK(σ, β) )(n) ) (x)

• IJcK(σ, β) = β(c) = 1C

• σ( IJcK(σ, β) )(n) = σ( 1C )(n) = ∅

• σ ( σ( IJcK(σ, β) )(n) ) (x) = ⊥

by the following rule:

IJv(F )K(σ, β) =

{

σ(u′)(v) , if IJF K(σ, β) = {u′} ⊆ dom(σ)
⊥ , otherwise

(if v : C0,1)



Object Constraint Language (OCL)
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OCL is the same — just with less readable (?) syntax.

Literature: (OMG, 2006; Warmer and Kleppe, 1999).

Examples (from lecture “Softwaretechnik 2008”)
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TeamMember

name : String
age : Integer

name : String

Location

participants

2..* meetings

*
title : String
numParticipants : Integer
start : Date
duration: Time

Meeting

move(newStart : Date)

1

*

context Meeting
inv: self.participants->size() =
numParticipants

context Location
inv: name="Lobby" implies
meeting->isEmpty()

Pr
of

.D
r.

P.
Th

ie
m

an
n,

ht
tp

:/
/p

ro
gl

an
g.

in
fo

rm
at

ik
.u

ni
-f

re
ib

ur
g.

de
/t

ea
ch

in
g/

sw
t/

20
0

8/



Literature

–
12

–
20

17
-0

7-
0

3
–

So
cl

–

16/66

                                                                                                                      
Date: May 2006

Object Constraint Language
OMG Available Specification

Version 2.0

formal/06-05-01

Where To Put OCL Constraints?
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• Notes: A UML note is a diagram element of the form

text

text can principally be everything, in particular comments and constraints.

Sometimes, content is explicitly classified for clarity:
OCL:

F

• Conventions:

C
. . .
. . .

F

stands for

C
. . .
. . .

∀ self ∈ allInstancesC • F

Type: d : D_* 
Constraint: 
  forall c in AllInstances_C . 
    size( d( c ) ) = 3 or 
    size( d( c ) ) >= 17 
    and size( d( c ) ) <= 21



Content

–
12

–
20

17
-0

7-
0

3
–

Sc
on

te
nt

–

18/66

• Proto-OCL

• syntax, semantics,
• Proto-OCL vs. OCL.
• Proto-OCL vs. Software

• An outlook on UML

• Principles of (Good) Design

• modularity, separation of concerns
• information hiding and data encapsulation
• abstract data types, object orientation
• . . .by example

• Architecture Patterns

• Layered Architectures, Pipe-Filter,
Model-View-Controller.

• Design Patterns

• Strategy, Examples

• Libraries and Frameworks

Putting It All Together
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Modelling Structure with Class Diagrams
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Definition. Software is a finite description S of a (possibly infinite) set JSK of
(finite or infinite) computation paths of the form σ0

α
1−→ σ1

α
2−→ σ2 · · · where

• σi ∈ Σ, i ∈ N0, is called state (or configuration), and
• αi ∈ A, i ∈ N0, is called action (or event).

The (possibly partial) function J · K : S 7→ JSK is called interpretation of S.

• The set of states Σ could be the set of system states as defined by a class diagram, e.g.

Σ := ΣD
S S :

C
x : Int

• A corresponding computation path of a software S could be

27C : C
x = 0

τ−→ 27C : C
x = 1

τ−→ 27C : C
x = 3

τ−→ 27C : C
x = 4

τ−→ . . .

• If a requirement is formalised by the Proto-OCL constraint

F = ∀ c ∈ allInstancesC • x(c) < 4

then S does not satisfy the requirement.

More General: Software vs. Proto-OCL
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• Let S be an object system signature and D a structure.

• Let S be a software with

• states Σ ⊆ ΣD
S , and

• computation paths JSK.

• Let F be a Proto-OCL constraint over S .

• We say JSK satisfies F , denoted by JSK |= F , if and only if for all

σ0

α1−−→ σ1

α2−−→ σ2 · · · ∈ JSK

and all i ∈ N0,
IJF K(σi, ∅) = true.

• We say JSK does not satisfy F , denoted by JSK 6|= F , if and only if there exists

σ0

α1−−→ σ1

α2−−→ σ2 · · · ∈ JSK and i ∈ N0, such that IJF K(σi, ∅) = false.

• Note: ¬(JSK 6|= F ) does not imply JSK |= F .
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• Class Diagrams can be used to graphically

• visualise code,
• define an object system structure S .

• An Object System Structure S (together with a structure D )

• defines a set of system states ΣD
S .

• A System State σ ∈ ΣD
S

• can be visualised by an object diagram.

• Proto-OCL constraints can be evaluated on system states.

• A software over ΣD
S satisfies a Proto-OCL constraint F if and only

if F evaluates to true in all system states of all the software’s com-
putation paths.
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• Proto-OCL

• syntax, semantics,
• Proto-OCL vs. OCL.
• Proto-OCL vs. Software

• An outlook on UML

• Principles of (Good) Design

• modularity, separation of concerns
• information hiding and data encapsulation
• abstract data types, object orientation
• . . .by example

• Architecture Patterns

• Layered Architectures, Pipe-Filter,
Model-View-Controller.

• Design Patterns

• Strategy, Examples

• Libraries and Frameworks
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Once Again, Please
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System

Software System

Component

Software Component

Module

Interface

Component Interface
consists of 1 or more

"

is
a

is
a

may be a

has is
an

Software Architecture

Architecture

Architectural Description

Design

software architecture — The software architecture of a program or computing system is the
structure or structures of the system which comprise software elements, the externally visi-
ble properties of those elements, and the relationships among them. (Bass et al., 2003)

isan

is described by

is the result of
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Goals and Relevance of Design
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• The structure of something is the set of relations between its parts.
• Something not built from (recognisable) parts is called unstructured.

Design. . .

(i) structures a system into manageable units (yields software architecture),

(ii) determines the approach for realising the required software,

(iii) provides hierarchical structuring into a manageable number of units
at each hierarchy level.

Oversimplified process model “Design”:

req.

designdesign

arch.

designer

design

module

spec.

impl.impl.

code

programmer

implementation
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Principles of (Architectural) Design
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1.) Modularisation

• split software into units / components of manageable size

• provide well-defined interface

2.) Separation of Concerns

• each component should be responsible for a particular area of tasks

• group data and operation on that data; functional aspects; functional vs. technical;
functionality and interaction

3.) Information Hiding

• the “need to know principle” / information hiding
• users (e.g. other developers) need not necessarily know the algorithm and helper data

which realise the component’s interface

4.) Data Encapsulation

• offer operations to access component data,
instead of accessing data (variables, files, etc.) directly

→ many programming languages and systems offer means to enforce (some of) these
principles technically; use these means.

1.) Modularisation
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modular decomposition — The process of breaking a system into compo-
nents to facilitate design and development; an element of modular program-
ming. IEEE 610.12 (1990)

modularity — The degree to which a system or computer program is com-
posed of discrete components such that a change to one component has
minimal impact on other components. IEEE 610.12 (1990)

• So, modularity is a property of an architecture.
• Goals of modular decomposition:

• The structure of each module should be simple and easily comprehensible.
• The implementation of a module should be exchangeable;

information on the implementation of other modules should not be necessary.
The other modules should not be affected by implementation exchanges.

• Modules should be designed such that expected changes
do not require modifications of the module interface.

• Bigger changes should be the result of a set of minor changes.
As long as the interface does not change,
it should be possible to test old and new versions of a module together.



2.) Separation of Concerns
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• Separation of concerns is a fundamental principle in software engineering:
• each component should be responsible for a particular area of tasks,
• components which try to cover different task areas tend to be unnecessarily complex,

thus hard to understand and maintain.

• Criteria for separation/grouping:

• in object oriented design, data and
operations on that data are grouped
into classes,

• sometimes, functional aspects
(features) like printing are realised as
separate components,

• separate functional and technical
components,
Example: logical flow of (logical) messages
in a communication protocol (functional)
vs. exchange of (physical) messages using
a certain technology (technical).

• assign flexible or variable
functionality to own components.
Example: different networking technology
(wireless, etc.)

• assign functionality which is expected
to need extensions or changes later
to own components.

• separate system functionality and
interaction

Example: most prominently graphical
user interfaces (GUI), also file input/output

3.) Information Hiding
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• By now, we only discussed the grouping of data and operations.
One should also consider accessibility.

• The “need to know principle” is called information hiding in SW engineering. (Parnas, 1972)

information hiding— A software development technique in which each module’s inter-
faces reveal as little as possible about the module’s inner workings, and other modules
are prevented from using information about the module that is not in the module’s in-
terface specification. IEEE 610.12 (1990)

• Note: what is hidden is information which other components need not know
(e.g., how data is stored and accessed, how operations are implemented).

In other words: information hiding is about making explicit for one component
which data or operations other components may use of this component.

• Advantages / goals:

• Hidden solutions may be changed without other components noticing,
as long as the visible behaviour stays the same (e.g. the employed sorting algorithm).
IOW: other components cannot (unintentionally) depend on details they are not supposed to.

• Components can be verified / validated in isolation.
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• Similar direction: data encapsulation (examples later).

• Do not access data (variables, files, etc.) directly where needed, but encapsulate the data in
a component which offers operations to access (read, write, etc.) the data.
Real-World Example: Users do not write to bank accounts directly, only bank clerks do.

4.) Data Encapsulation
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• Similar direction: data encapsulation (examples later).

• Do not access data (variables, files, etc.) directly where needed, but encapsulate the data in
a component which offers operations to access (read, write, etc.) the data.
Real-World Example: Users do not write to bank accounts directly, only bank clerks do.
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• Similar direction: data encapsulation (examples later).

• Do not access data (variables, files, etc.) directly where needed, but encapsulate the data in
a component which offers operations to access (read, write, etc.) the data.
Real-World Example: Users do not write to bank accounts directly, only bank clerks do.

• Information hiding and data encapsulation — when enforced technically (examples later) —
usually come at the price of worse efficiency.

• It is more efficient to read a component’s data directly
than calling an operation to provide the value: there is an overhead of one operation call.

• Knowing how a component works internally may enable more efficient operation.
Example: if a sequence of data items is stored as a singly-linked list, accessing the data items in
list-order may be more efficient than accessing them in reverse order by position.
Good modules give usage hints in their documentation (e.g. C++ standard library).

Example: if an implementation stores intermediate results at a certain place, it may be tempting
to “quickly” read that place when the intermediate results is needed in a different context.

→ maintenance nightmare — If the result is needed in another context,
add a corresponding operation explicitly to the interface.

Yet with today’s hardware and programming languages, this is hardly an issue any more;
at the time of (Parnas, 1972), it clearly was.

A Classification of Modules (Nagl, 1990)
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• functional modules

• group computations which belong together logically,
• do not have “memory” or state, that is, behaviour of offered functionality does not depend on prior

program evolution,
• Examples: mathematical functions, transformations

• data object modules

• realise encapsulation of data,
• a data module hides kind and structure of data, interface offers operations to manipulate

encapsulated data
• Examples: modules encapsulating global configuration data, databases

• data type modules

• implement a user-defined data type in form of an abstract data type (ADT)
• allows to create and use as many exemplars of the data type
• Example: game object

• In an object-oriented design,

• classes are data type modules,
• data object modules correspond to classes offering only class methods or singletons (→ later),
• functional modules occur seldom, one example is Java’s class Math.
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• Proto-OCL

• syntax, semantics,
• Proto-OCL vs. OCL.
• Proto-OCL vs. Software

• An outlook on UML

• Principles of (Good) Design

• modularity, separation of concerns
• information hiding and data encapsulation
• abstract data types, object orientation
• . . .by example

• Architecture Patterns

• Layered Architectures, Pipe-Filter,
Model-View-Controller.

• Design Patterns

• Strategy, Examples

• Libraries and Frameworks
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• Over decades of software engineering,
many clever, proved and tested designs
of solutions for particular problems emerged.

• Question: can we generalise, document and re-use these designs?

• Goals:
• “don’t re-invent the wheel”,
• benefit from “clever”, from “proven and tested”, and from “solution”.

architectural pattern — An architectural pattern expresses a fundamental
structural organization schema for software systems.
It provides a set of predefined subsystems, specifies their responsibilities, and
includes rules and guidelines for organizing the relationships between them.

Buschmann et al. (1996)

Introduction Cont’d
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architectural pattern — An architectural pattern expresses a fundamental
structural organization schema for software systems.
It provides a set of predefined subsystems, specifies their responsibilities, and
includes rules and guidelines for organizing the relationships between them.

Buschmann et al. (1996)

• Using an architectural pattern
• implies certain characteristics or properties of the software

(construction, extendibility, communication, dependencies, etc.),
• determines structures on a high level of the architecture,

thus is typically a central and fundamental design decision.

• The information that (where, how, . . . ) a well-known architecture / design pattern
is used in a given software can

• make comprehension and maintenance significantly easier,
• avoid errors.
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Example: Layered Architectures
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• (Züllighoven, 2005):
A layer whose components only interact with components
of their direct neighbour layers is called protocol-based layer.
A protocol-based layer hides all layers beneath it
and defines a protocol which is (only) used by the layers directly above.

• Example: The ISO/OSI reference model.

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2. Data link

1. Physical

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2. Data link

1. Physical

data

packets

frames

bits
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• Object-oriented layer: interacts with layers directly (and possibly further) above and below.
• Rules: the components of a layer may use

• only components of the protocol-based layer directly beneath, or
• all components of layers further beneath.

GNOME etc.

 Applications

GTK+

GDK ATK

Cairo GLib

GIOPango

Example: Layered Architectures Cont’d
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• Object-oriented layer: interacts with layers directly (and possibly further) above and below.
• Rules: the components of a layer may use

• only components of the protocol-based layer directly beneath, or
• all components of layers further beneath.

GNOME etc.

 Applications

GTK+

GDK ATK

Cairo GLib

GIOPango
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Desktop Host

presentation tier

Application Server

(business) logic tier

data tier

Database Server

DBMS

(Ludewig and Lichter, 2013)

• presentation layer (or tier):
user interface; presents information obtained from
the logic layer to the user, controls interaction with
the user, i.e. requests actions at the logic layer ac-
cording to user inputs.

• logic layer:
core system functionality; layer is designed without
information about the presentation layer, may only
read/write data according to data layer interface.

• data layer:
persistent data storage; hides information about
how data is organised, read, and written, offers par-
ticular chunks of information in a form useful for the
logic layer.

• Examples: Web-shop, business software (enterprise resource planning), etc.

Layered Architectures: Discussion
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7. Application

6. Presentation

5. Session

4. Transport

3. Network

2. Data link

1. Physical

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2. Data link

1. Physical

data

packets

frames

bits

GNOME etc.

 Applications

GTK+

GDK ATK

Cairo GLib

GIOPango

Desktop Host

presentation tier

Application Server

(business) logic tier

data tier

Database Server

DBMS

(Ludewig and Lichter, 2013)

• Advantages:
• protocol-based:

only neighouring layers are coupled, i.e. components of these layers interact,
• coupling is low, data usually encapsulated,
• changes have local effect (only neighbouring layers affected),
• protocol-based: distributed implementation often easy.

• Disadvantages:
• performance (as usual) — nowadays often not a problem.



Pipe-Filter

–
12

–
20

17
-0

7-
0

3
–

m
ai

n
–

43/66

Example: Pipe-Filter
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Example: Compiler

lexical analysis
(lexer)

syntactical analysis
(parser)

semantical
analysis

code
generation

ASCII Tokens AST dAST

Sourcecode

Objectcode

Errormessages
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Example: Compiler

lexical analysis
(lexer)

syntactical analysis
(parser)

semantical
analysis

code
generation

ASCII Tokens AST dAST

Sourcecode

Objectcode

Errormessages

Example: UNIX Pipes

ls -l | grep Sarch.tex | awk ’{ print $5 }’

• Disadvantages:
• if the filters use a common data exchange format, all filters may need changes

if the format is changed, or need to employ (costly) conversions.
• filters do not use global data, in particular not to handle error conditions.

Model-View-Controller
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• Advantages:

• one model can serve multiple view/controller pairs;
• view/controller pairs can be

added and removed at runtime;
• model visualisation always

up-to-date in all views;
• distributed implementation (more or less) easily.

• Disadvantages:

• if the view needs a lot of data, updating the view can be inefficient.

Design Patterns
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• In a sense the same as architectural patterns, but on a lower scale.
• Often traced back to (Alexander et al., 1977; Alexander, 1979).

Design patterns ... are descriptions of communicating objects and classes that are cus-
tomized to solve a general design problem in a particular context.

A design pattern names, abstracts, and identifies the key aspects of a common design
structure that make it useful for creating a reusable object-oriented design.

(Gamma et al., 1995)

Tell Them What You’ve Told Them. . .
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• Architecture & Design Patterns

• allow re-use of practice-proven designs,
• promise easier comprehension and maintenance.

• Notable Architecture Patterns

• Layered Architecture,
• Pipe-Filter,
• Model-View-Controller.

• Design Patterns: read (Gamma et al., 1995)

• Rule-of-thumb:

• library modules are called from user-code,
• framework modules call user-code.
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• Boxes/lines and finite automata are used to visualise software for ages.

• 1970’s, Software Crisis™
— Idea: learn from engineering disciplines to handle growing complexity.
Modelling languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

• Mid 1980’s: Statecharts (Harel, 1987), StateMate™ (Harel et al., 1990)

• Early 1990’s, advent of Object-Oriented-Analysis/Design/Programming
— Inflation of notations and methods, most prominent:
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• Boxes/lines and finite automata are used to visualise software for ages.

• 1970’s, Software Crisis™
— Idea: learn from engineering disciplines to handle growing complexity.
Modelling languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

• Mid 1980’s: Statecharts (Harel, 1987), StateMate™ (Harel et al., 1990)

• Early 1990’s, advent of Object-Oriented-Analysis/Design/Programming
— Inflation of notations and methods, most prominent:

• Object-Modeling Technique (OMT)
(Rumbaugh et al., 1990)
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• Boxes/lines and finite automata are used to visualise software for ages.

• 1970’s, Software Crisis™
— Idea: learn from engineering disciplines to handle growing complexity.
Modelling languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

• Mid 1980’s: Statecharts (Harel, 1987), StateMate™ (Harel et al., 1990)

• Early 1990’s, advent of Object-Oriented-Analysis/Design/Programming
— Inflation of notations and methods, most prominent:

• Object-Modeling Technique (OMT)
(Rumbaugh et al., 1990)

• Booch Method and Notation
(Booch, 1993)
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• Boxes/lines and finite automata are used to visualise software for ages.

• 1970’s, Software Crisis™
— Idea: learn from engineering disciplines to handle growing complexity.
Modelling languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

• Mid 1980’s: Statecharts (Harel, 1987), StateMate™ (Harel et al., 1990)

• Early 1990’s, advent of Object-Oriented-Analysis/Design/Programming
— Inflation of notations and methods, most prominent:

• Object-Modeling Technique (OMT)
(Rumbaugh et al., 1990)

• Booch Method and Notation
(Booch, 1993)

• Object-Oriented Software Engineering (OOSE)
(Jacobson et al., 1992)
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A Brief History of the Unified Modelling Language (UML)

–
12

–
20

17
-0

7-
0

3
–

Su
m

lo
ut

lo
ok

–

65/66

• Boxes/lines and finite automata are used to visualise software for ages.

• 1970’s, Software Crisis™
— Idea: learn from engineering disciplines to handle growing complexity.
Modelling languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

• Mid 1980’s: Statecharts (Harel, 1987), StateMate™ (Harel et al., 1990)

• Early 1990’s, advent of Object-Oriented-Analysis/Design/Programming
— Inflation of notations and methods, most prominent:

• Object-Modeling Technique (OMT)
(Rumbaugh et al., 1990)

• Booch Method and Notation
(Booch, 1993)

• Object-Oriented Software Engineering (OOSE)
(Jacobson et al., 1992)

Each “persuasion” selling books, tools, seminars. . .

• Late 1990’s: joint effort of “the three amigos” UML 0.x and 1.x

Standards published by Object Management Group (OMG), “international, open membership,
not-for-profit computer industry consortium”. Much criticised for lack of formality.

• Since 2005: UML 2.x, split into infra- and superstructure documents.
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Figure A.5 - The taxonomy of structure and behavior diagram
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