Softwaretechnik / Software-Engineering

Lecture 12: Proto-OCL,
Modularisation & Design Patterns

2017-07-03

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Partial vs. Complete Object Diagrams

= By now we discussed “object diagram represents system state":

{lo = (pr b (5c)),
¢ {p > 0,0 0}, c—
1p = {p+ {5c}.x = 23}}

What about the other way round...?

- Object diagrams can be partial, e

— we may omit information.

- Isthe following object diagram partial or complete?

If an object diagram
« has values for all attributes of all objects in the diagram, and
« ifwe say that tis meant to be complete

then we can uniquely reconstruct a system state o

4766

Topic Area Architecture & Design: Content

VL10 « Introduction and Vocabulary

« Software Modelling |
views and viewpoints, the 4+1 view
‘model-driven/-based software engineering
Modelling structure

VLl

vL12

o Principles of Design

‘modularity, separation of concerns
information hiding and data encapsulation
abstract data types, object orient:
(iv) Design Patterns

VLI3 o Software Modelling Il
(i) Modelling behaviour
a) communicating finite automata
b) Uppaal query language
©) basic state-machines
d) an outlook on hierarchical state-machines

VL14

Special Case: Anonymous Objects

If the object diagram

is considered as complete, then it denotes the set of all system states

{lc /30 C4h 0, ¢ @) CLB  CI 4 ), x 23}
where ¢ [C4(C), d CAD), c#lc.

Intuition: different boxes represent different objects.

Content

Content

5166

« Proto-OCL
« syntax, semantics,
(e Proto-OCL vs. OCL.
« Proto-OCL vs. Software
« Anoutlook on UML
 Principles of (Good) Design
« modularity, separation of concerns
i i ing and data
« abstract data types, object orientation
* ~—byexample
« Architecture Patterns

7L « Layered Architectures, Pipe-Filter,
Model-View-Controller.

« Design Patterns

e Strategy, Examples

ibraries and Frameworks

3r66

« Proto-OCL

* syntax, semantics,

« Proto-OCL vs. OCL.
‘e Proto-OCL vs. Software
« Anoutlook on UML

« Principles of (Good) Design

e modularity, separation of concerns
. ion hiding and data

I abstract data types, object orientation
+ ...by example

 Architecture Patterns

e Layered Architectures, Pipe-Filter,
Model-View-Controller.

« Design Patterns
L. Strategy, Examples

« Libraries and Frameworks



Motivation ] Constraints on System States
C

C
Lo,, a: Int
R « Example: for all C-instances, z should never have the value 27.
7 b o1 A 7 Ve € alllnstancesc o x(c) # 27
Towards Object Constraint Logic (OCL) o Proto-OCL Syntax wrt. signature (T, C, V; atr, F, mth), cis a logical variable, C' € C:
“ _ »__ How do | precisely, formally tell my developers that
— “Proto-OCL ° precisely, formafy tell my P ! ¢ e @
All D-instances having a link to the same C object e
should have links to the same A. | allinstancesc = 2
. . . F 1o = ifv:7e€atr(C) reT &)
« Thatis, the following system state is forbidden in the software: Io®) e e viT € atr(C)
| w(F) 17 = 7D, ifv: Do,y € atr(C)
| w(F) 17c =270, ifv: Deg atr(C)
| AP F) cmxcx o, W fimixexm o
. )
Note: formally, it is a proper system state. | YeeFieF;, :7cx2C xBr=Bry
~ " . b sl
3 » Use (Proto-)OCL: “Dear developers, please only use system states which satisfy: |« The formula above in prefix normal form: Ve € alllustancesce # (o(e),27)
g g f e
i Vdj € allinstancesg oV d; € allinstancesg o ¢(dy) = ¢(d2) == a(d1) = a(dz) H rbl_
13 8/66 ] Ies
Semantics @) (v=ed) Semantics Cont Example: Evaluate Formula for System State
 Proto-OCL Types: « Proto-OCL is a three-valued logic: a formula evaluates to true, false, or 1. $ [ ]
 I[re] =D(@) U{L} IlrekF DM U{L}, Z[27¢] =D(Co {1} e E
o I[B (JF {true,false} U {1}, Z[ZJF2Z 0 {1} « Example: A (-,-) : {true, false, L} x {true, false, L} — {true, false, L} is defined as follows: i swm.@mw
ott) Ve € alllnstancesc o x(c) # 27
« Functions: 21 true | true  true | false | false | false | L | L | L GO
« Weassume fy given for each function symbol f (— ina minute). z2 tue | falke L | tue | false | L | tue | false | L « Recall prefix notation: V¢ € alllnstancesc » #(x(c),27)
M) || tue | false L | faise | faise | false | L | false | L
Note: #is a binary function symbol, 27 is a 0-ary function symbol
* Proto-OCL Semantics (interpretation function): We assume common logical connectives -, A, V/, ... with canonical 3-valued interpretation.
o Z[cl(o,8) = A(c) (assuming 3 is a type-consistent valuation of the logical variables), e " () (@O (L) X (B0 (1)) > 20 (1)  Example:
 Example: +1(-,) : (Z U x(Z0 > 7ZU ) .
« Tlallinsancesc: (o, = dome) 1 D). ple TV e € allinstancesc » £(x(c), 27)](7,0) = tue, because...
e S -
_ [artan e # Landas # 1 I[#(@(c), 2D](0, 8),  B:=0lc:=1c] = {e 10}
< Tl = [T AU ATND) Qom0 i) T othervise
gy L @ . otherwise =#1(Zlz(e))(o, 8), T[27)(e. 8) )
v TCFe )€ dow o), o( TEFI6H))G) 5] EFRY We assume common arithmetic operations —, /. =, ... G D e
- _ [bee) T oAy ={u-Cdomiey and relation symbols >, <, <, ... with monotone 3-valued interpretation. =#1((o(Z[c] (o, B) (@), 27v)
- sl = {15 R bzt X
« And we assume the special unary function symbol is Undefined: =#1(a(B(e))(x), 271 )
o U BN, B) = [1TTRN@, B). - Z[Fal(@, B)).
e ifr =L, j =#1(o(1e)(@). 2Ty )
tue | ifZ[R](o. Ble = ul) = tue forall u € I[F1](o. 5) 3 isUndefined () = 9 e oherwise g
« I[Vce Fi o Ba](o.8) = false ,if Z[F,)(o. Al := u) = false for some u € Z[F1](o, #) 3 ' 5 =#1(13,27) =true  ...and 1. is the only C-object in o Z[allInstances ¢ 1(e, #) = {1}
~ 1 otherwise : e: it never yields 1. :

10766 166 12




More Interesting Example

=§lxnl,
:I\www
Ve alllnstancesc o x(n(c)) # 27
« Similar to the previous slide, we need the value of

IEm()(.8).8 = {e - 1c}
« Z[(e.8) = B(e) = 1c

o Z[n(e)](o, ) = L since o( Z[c] (n) = 0 # {u'} by rule

_ 47 I ZIF)(o. 5) € dom(o) and o@IFI(o AN = (u ¢ .
e B = AF . otherwise o

(0,8))

o Z[z(n(c)](o,8) = Lsince Z[n(c)](o, ) = L by rule

o @IFI@.0) () .#T[F](. ) € dom(a)
L

it (ifnotv : o) 7

7 TP, ) = ﬁ

m.xsx.t\mu. (from lecture “Softwaretechnik 2008 )

. nunParticipants.
 context Location

o inv: name="Lobby"

meeting->isEnpEyQ) B

Y s m&i&rﬁ\i .
=7
siz ( gakeiponts (it )) = win, Feepuds (o)

13766

JR«P& Interesting Example

llluuas,
Ve: Bex(n(c) # 27

by the followi

_ Jo@Sw) | fILF](o. u Cdom(o) . .
5 P\H_Ez__?s; " ’ otherise _:.077

\ 1

Literature

THE OBIECT
CONSTRAINT
LANGUAGE =
PRECISE MODELING WiTH UML

16/66

Object Constraint Language (OCL)

OCL is the same — just with less readable (?) syntax.

Literature: (OMG, 2006; Warmer and Kleppe, 1999)

14/66

Where To Put OCL Constraints?

« Notes: A UML note is a diagram element of the form

teat can principally be everything, in particular comments and constraints.

OocCL:

Sometimes, content is explicitly classified for clarity: P

« Conventions:

= C
e stands for
L1

Y
Vself € alllnstancesc o F

17s66



Content

e Proto-OCL

syntax, semantics,
Proto-OCL vs. OCL.
Proto-OCL vs. Software

« An outlook on UML
. P

ples of (Good) Design

1+ modularity, separation of concerns

(o il i iding and data

abstract data types, object orientation
.by example

o Architecture Patterns

7/ Layered Architectures, Pipe-Filter,
Model-View-Controller.

« Design Patterns
7/ Strategy, Examples

o Libraries and Frameworks

More General: Software vs. Proto-OCL

LetS be an object system signature and D a structure

Let S be a software with
o states ¥ C ©2,and
« computation paths [S].

Let /" be a Proto-OCL constraint over S .

We say [S] satisfies F, denoted by [S] |= F", if and only if for al

ay, ay
g9 — 01— 02

€[s]

andalli € No,
I[F](0,0) = true.

We say [S] does not satisfy F, denoted by [S] | F,

0025 5, 2% 0, € [S]and i € Ny, such that Z[F] (o, 0) = false.

and only if there exists

Note: ~([S] | F) does notimply [S] = F.

Putting It All Together

19766

Tell Them What You've Told Them. ..

.

Class Diagrams can be used to graphically

isualise code,
o define an object system structure S .

An Object System Structure S (together with a structure D)
o defines a set of system states $2.

ASystem State 0 € X2

« canbe visualised by an object diagram.

Proto-OCL constraints can be evaluated on system states.
Asoftware over ©2 satisfies a Proto-OCL constraint £ if and only

if F evaluates to true in all system states of all the softwares com-
putation paths.

2266

Modelling Structure with Class Diagrams

ition. Software is a finite description S of a (possibly infinite) set [] of
(finite or infinite) computation paths of the form oo % a; % o, - - where
« 01 € ,i € No, is called state (or configuration), and

« o € A,i € Nois called action (or event).

The (possibly partial) function [ -] : § + [S] is called interpretation of S.

« The set of states X could be the set of system states as defined by a class diagram, e.g.

532 M_H

« Acorresponding computation path of a software S could be

TE S B[S S TS,

« Ifarequirement is formalised by the Proto-OCL constraint

F =VYec€ alllnstancesc o x(c) < 4

then S does not satisfy the requirement.

« Proto-OCL
* syntax, semantics,
« Proto-OCL vs. OCL.
‘e Proto-OCL vs. Software
——Anouttook oML

o Principles of (Good) Design
e modularity, separation of concerns
. ion hiding and data
abstract data types, object orientation
+ ...by example

 Architecture Patterns

T Layered Architectures, Pipe-Filter,
Model-View-Controller.

« Design Patterns
L. Strategy, Examples

« Libraries and Frameworks

20765




Once Again, Please

Interface

System —— C  Component ——— Component Interface

Software System —————— Software Component

S i s ek a0 LGS o D
Software Architecture

Architecture

1
Design

| Architectural Description

Principles of (Architectural) Design

24/66

27766

Goals and Relevance of Design

. of
= Something not built from (recognisable) parts s called unstructured.

Design...
0] 3
(i) determines the approach for realising the required software,

(i i intoa of units
at each hierarchy level

Oversimplified process model *Design”

==

]

implementation

25/66

Overview

1) Modularisation

« split software into units / components of manageable size
« provide well-defined interface

2) Separation of Concerns

« each component should be responsible for a particular area of tasks
« group data and operation on that data; functional aspects; functional vs. technical;
functionality and interaction

3) Information Hiding

« the “need to know principle” / information hiding
« users (e.g. other developers) need not necessarily know the algorithm and helper data
which realise the components interface

4) Data Encapsulation

« offer operations to access component data,
instead of accessing data (variables, files, etc.) directly

— many programming languages and systems offer means to enforce (some of) these
principles technically; use these means. 28
/66

1.) Modularisation

modular decomposition — The process of breaking a system into compo-
nents to facilitate design and { it of modular program-
ming. |EEE 610.12 (1990)

modularity — The degree to which a system or computer program is com-
posed of discrete components such that a change to one component has
minimal impact on other components. IEEE 610.12(1990)

So, modularity is a property of an architecture.
Goals of modular decomposi

The structure of each module should be simple and easily comprehensible.
The implementation of a module should be exchangeable;

information on the implementation of other modules should not be necessary.
The other modules should not be affected by implementation exchanges.
Modules should be designed such that expected changes

do not require modifications of the module interface.

Bigger changes should be the result of a set of
As long as the interface does not change,

it should be possible to test old and new versions of a module together.

inor changes.

26/66




2.) Separation of Concerns 3.) Information Hiding 4.) Data Encapsulation

« By now, we only discussed the grouping of data and operations. « Similar direction: data encapsulation (examples later).
One should also consider accessibility. » Do not access data (variables, files, etc.) directly where needed, but encapsulate the data in
« The “need to know principle” is called information hiding in SW engineering. (Parnas, 1972) acomponent which offers operations to access (read, write, etc.) the data.

« Separation of concerns is a fundamental principle in software engineering:
« each component should be responsible for a particular area of tasks,

« components which try to cover different task areas tend to be unnecessarily complex,

thus hard to understand and maintain. Real-World Example: Users do not write to bank accounts directly, only bank clerks do.

hiding-—- A soft hnique in which each
« Criteria for separation/grouping faces reveal as litle as possible about the modules inner workings, and other modules Akl _ = e =
. X " are prevented from using information about the module that is not in the modules in- R =
o inobject oriented design, dataand o assign flexible or variable terface specification. 012(199 e I
operations on that data are grouped functionality to own components. P ) IEEE 61012 (1990) FETe
into classes, Example: different networking technology A
« sometimes, functional aspects (wireless, etc.) « Note: whatis hidden is information which other components need not know it T, TPt it
(features) like printing are realised as o assign functionality which is expected (e.g. how data is stored and accessed, how operations are implemented) aw; n_;z.ﬂ sonz s e o
separate components, to need extensions or changes later i
In other words: information hiding is about making explicit for one component
* separate functional and technical o own components. ‘which data or operations other components may use of this component. -
components, o coston o Skay o aoapma T
Example: logical flow of (logical) messages * separate system functionality and o Advantages / goals
interaction
; na Szaa_a_nw:o:: uaﬁcs_ (functional) ) . i « Hidden solutions may be changed without other components noticing, §
! vs. exct wﬂmm:o “_u ysical uyammw%mm using Example: most prominently graphical H as long as the visible behaviour stays the same (e.g. the employed sorting algorithm).
: acertain technology (technical) userinterfaces (GUI) also file input/output g IOW: other components cannot (unintentionally) depend on detals they are not supposed to S Sapinte
: ©« Components can be verified / validated in isolation. g e R R
30768 3Ves
4.) Data Encapsulation 4.) Data Encapsulation A Classification of Modules (Nagl, 1990)
« Similar direction: data encapsulation (examples later). « Similar direction: data encapsulation (examples later). * functional modules
= group computations which belong together logically,
« Do not access data (variables, files, etc. directly where needed, but encapsulate the data in « Do not access data (variables, files, etc) directly where needed, but encapsulate the data in e o o stoe, ot et o affered function 4y doss not depend on prior
acomponent which offers operations to access (read, write, etc) the data acomponent which offers operations to access (read, wite, etc) the data. program evolution, T
Real-World Example: Users do not write to bank accounts directly, only bank clerks do, Real-World Example: Users do not write to bank accounts directly, only bank clerks do. « Examples: mathematical functions, transformations
N . ng and data ion — when enforced technically (examples later) — « data object modules

e RS T = usually come at the price of worse efficiency. « realise encapsulation of data,
« adatamodule hides kind and structure of data, interface offers operations to manipulate
encapsulated data
« Examples: modules encapsulating global configuration data, databases

»
o
-
[

« Itis more efficient to read a components data directly
than calling an operation to provide the value: there is an overhead of one operation cal

« Knowing how a component works internally may enable more efficient operation.

i Example: if a sequence of dataitems is stored s a singly-linked list, accessing the data items in data type modules
e e ist-order may be more efficient than accessing them in reverse order by position.

Good modules give usage hints in their documentation (e.g. C++ standard library). * Implementa user-defined data type in form of an abstract data type (ADT)
8 o eraor vary « allows to create and use as many exemplars of the data type
E , Example: if an implementation stores intermediate results at a certain place, it may be tempting « Example: game object

X . to “quickly” read that place when the intermediate results is needed in a different context.

: "icssans TP —» maintenance nightmare — If the result is needed in another context, In an object-oriented design,
e i) add a corresponding operation explicily to the interface. g

7l « classes are data type modules,

3 ol & Excepton an © Yetwith todays hardware and programming languages, this is hardly an issue any more; © o dataobject modules correspond to classes offering only class methods or singletons (—> later),
S e 2 at the time of (Parnas, 1972), it clearly was.
3266 326

« functional modules oceur seldom, one example is Javai class Math,




Introduction

Content

o Proto-OCL
« Over decades of software engineering,
many clever, proved and tested designs
of solutions for particular problems emerged.

syntax, semantics,
Proto-OCL vs. OCL.
Proto-OCL vs. Software

« An outlook on UML * Question: can we ise, d and re-use these designs?
o Principles of (Good) Design Architecture Patterns
(= modularity, separation of concerns * Goals:
(® ion hiding and data i o “don't re-invent the wheel’,
abstract data types, object orientation « benefit from “clever’, from “proven and tested", and from “solution’
...by example

architectural pattern — An architectural pattern expresses a fundamental

o Architecture Patterns
structural organization schema for software systems.

7/ Layered Architectures, Pipe-Filter,

Model-View-Controller. . " e

It provid tof p and

o Design Patterns includes rules and guidelines for organizing the relationships between them.
Buschmann et al. (1996)

7/ Strategy, Examples

o Libraries and Frameworks £
346

Example: Layered Architectures

Introduction Cont’d

o (ziillighoven, 2005):
A layer whose components only interact with components
of their direct neighbour layers is called protocol-based layer.

and
A protocol-based layer hides all layers beneath it
and defines a protocol which is (only) used by the layers directly above.

architectural pattern — An architectural pattern expresses a fundamental

structural organization schema for software systems.

It of specifies their

includes rules and guidelines for organizing the relationships between them.
Buschmann et al. (1996)

Layered Architectures
o Example: The ISO/OSI reference model.

» Using an architectural pattern
« implies certain characteristics or properties of the software i T >§§H_§ i o i T >§“s._,2 i
" . i z

etc), [Presentation | -~~~ -~~~ - [ Presentation ]

» determines structures on a high level of the architecture, L2 13
thus is typically a central and fundamental design decision. B mmJSJ | - B mnmwsa |
[Emansport ] - [#Tanspon ]

« The information that (where, how, ...) a well-known architecture / design pattern rma packets T
is used in a given software can [BNetwon ] - "= - [3mewor |

3 T T
« make ion and mai easier, i [Zoataink | -~ -~ [2aaink__|

N s T
.| < avoiderrors, 3 g [EPRmea ] - L

g - @0 0f

376 38/66



Example: Layered Architectures Cont’d Example: Layered Architectures Cont’d Example: Three-Tier Architecture

« Object-oriented layer: interacts with layers directly (and possibly further) above and below. « Object-oriented layer: interacts with layers directly (and possibly further) above and below.
« Rules: the components of a layer may use + Rules: the components of a layer may use  presentation layer (or tier): "
Desktop Host
« only components of the protocol-based layer directly beneath, or « only components of the protocol-based layer directly beneath, or user interface; presents information obtained from 2
« all components of layers further beneath. « all components of layers further beneath. the logic layer to the user, controls interaction with [ presentation tier |
the user, i.e. requests actions at the logic layer ac-
cording to user inputs. Il
BEIR i _
- o logic layer: Application Server
prre—— [ello wortd] anoMEee! core system functionaity;laer s designed without T
Applications Applications information about the presentation layer, may only
read wite data according to data layer interface [ deaier ]
o data layer: I
[ pango i ook Atk cio | persistent data storage; hides information about Database Server
o GLib how datais organised, read, and written, offers par-
ticular chunks of information in a form useful for the
logic layer.
« Examples: Web-shop, business software ise resource planning), etc.
40766 40768
Layered Architectures: Discussion Example: Pipe-Filter
Example: Compiler
AsC) Tokens AT aasT Objectcode
i Texical analysis | | [syntactical analysis * semantical code
llexer) (parser) analysis generation
Pipe-Filter Sourcecode | | | O
« Advantages:
Erormessages

o protocol-based:
only neighouring layers are coupled, i.e. components of these layers interact,
« coupling is low, data usually encapsulated,

changes have local effect (only neighbouring layers affected),
» protocol-based: distributed implementation often easy.

« Disadvantages:

« performance (as usual) — nowadays often not a problem.

4266 43/66 44/



Example: Pipe-Filter
Example: Compiler
Ascll Tokens dAST Objectcode

O\ %ﬁ%@ == = -O

Sourcecode | | | | O

Erformessages

Example: UNIX Pipes

1s -1 | grep Sarch.tex | awk ’{ print $5 }’

« Disadvantages:

« if the filters use a common data exchange format, all filters may need changes
the format is changed, or need to employ (costly) conversions.
« filters do not use global data, in particular not to handle error conditions.

44s66

Example: Model-View-Controller

uses - M ~ sees

- change of - wesd
notification of
updates
/ \ access to

manipulation

46766

Example: Model-View-Controller

- < Veey
change of

controller visualisation .

Model-View-Controller ;sa.__,v

g 45/66 4666

Example: Model-View-Controller

change of

visualsation
controller | evAsaon view

N

access to

manipulation p
o E "

Design Patterns

« Advantages:
= one model can serve multiple view/controller pairs;

« view/controller pairs can be
added and removed at runtime;

model visualisation always
up-to-date in all views;
. distributed implementation (more o less) easily.

« Disadvantages:

H « if the view needs a lot of data, updating the view can be inefficient.
b 46765 a 47/66



Design Patterns

« Inasense the same as architectural patterns, but on a lower scale.
« Often traced back to (Alexander et al,, 1977; Alexander, 1979).

The
APuttern Language TimelessWayof
i i
it
E i |
L L

Design patterns i i b d ck hat are cus-
tomized to solve a general design problem in a particular context

Adesign pattern names, abstracts, and identifies the key aspects of a common design
structure that make it useful for creating a reusable object-oriented design,
(Gamma et al,, 1995)

48/66

References

Alesander . 1979 The Timees Way of Suding. Oxord UniversiyPress.

Aexander,, shkawa . and Siersten, M (977 Touns Buldings Constucion Oxford
B00ch, G, (993, Obect-rented Analysis anc Design with Agplations. Prentc-all

Buschmann, F, Meunler, R, Rohnert. H. lad, E, and Stal, M. 1996), ASystem of Patterns. ohn Wiley &
sons

Dobing, B. and Parsons, . (2006). How UML s used. Communications of the ACM, 49(5}109-114.

Gamma, E, Helm, R, lohnsson, R, and Viissides, . (1995). Design P

Harel, D, (1987) Statecharts Stience of Computer Programming, 8(3)231-274,

Harel, D, Lachover, H, et al (:990) IEEE Transactions on

Software Engincering, 6(4}403-414.
EEE (1990). IEEE Standard Glossary of Software Engineering Ter
Iacobson, 1, Christerson, M, and Jonsson, P. (1992).

IHotDraw (2007). hitp: //uww. jhotdras. org

Ludewig, ) and Lichter, H. 2013). Software Engineering. dpunktverlag. 3. edition

logy. Sd 61012-1990.

Nagl, M. (1990).

OMG (2006). version 20,

OMG (2007). Unified modeling language: Superstructure, version 21.2. Technical Report formal/ 07-11-02

Parmas, D. L (1972). On Commun. ACM, 15(:2)1053-108.

Rumbaugh, L, Blaha, M. Premerlani, W, Eddy, . and Lorensen, W. (:990). Object-Orented Modeling and Design. Prentice Hall
1. and Kleppe, A, (1999). Language.

Zlighoven, H. (2005). Tool

dpunktverlag/Morgan Kaufmann

63/66

Tell Them What You've Told Them. ..

Content

Architecture & Design Patterns

« allow re-use of practice-proven designs,
« promise easier comprehension and maintenance.

Notable Architecture Patterns
o Layered Architecture,

« Pipe-Filter,

« Modk

I-View-Controller.

Design Patterns: read (Gamma et al., 1995)

Rule-of-thumb:

« library modules are called from user-code,
» framework modules call user-code.

666

« Proto-OCL
* syntax, semantics,
« Proto-OCL vs. OCL.
* Proto-OCL vs. Software
« Anoutlook on UML
« Principles of (Good) Design
« modularity, separation of concerns
« information hiding and data encapsulation
« abstract data types, object orientation
« ...by example
 Architecture Patterns

T. Layered Architectures, Pipe-Filter,
Model-View-Controller.

« Design Patterns
T Strategy, Examples
o Libraries and Frameworks
64/66

A Brief History of the Unified Modelling Language (UML)

References

Boxes/lines and finite automata are used to visualise software for ages.
1970's, Software Crisis™

— Idea: learn from engineering ines to handle growing complexity.
Modelling languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

Mid 1980': Statecharts (Harel, 1987), StateMate™ (Harel et al,, 1990)

Early 1990's, advent of Object-Oriented-Analysis/Design/Programming
~ Inflation of notations and methods, most prominent:

6266

65766



A Brief History of the Unified Modelling Language (UML)

.

Boxes/lines and finite automata are used to visualise software for ages.

1970's, Software C
—Idea: learn from
Modk

to handle growing
1g languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

© Mid 19805: Statecharts (Harel, 1987), StateMate™ ¢

« Early1990's, advent of Object-Oriented-Analysis/
~ Inflation of notations and methods, most promin

« Object-Modeling Technique (OMT)
(Rumbaugh et al, 1990)

65/66

A Brief History of the Unified Modelling Language (UML)

« Boxes/lines and finite automata are used to visualise software for ages.

1970's, Software Cri
— Idea: learn from engis ing di: ines to handle gro
Mod:

™

9

g languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

Mid 1980's: Statecharts (Harel, 1987), StateMate™ (Harel et al,, 1990)

« Early 1990's, advent of Object-Oriented-Analysis/Design/Programming
— Inflation of notations and methods, most prominent:

 Object-Modeling Technique (OMT)
(Rumbaugh et al, 1990)

« Booch Method and Notation
(Booch, 1993)

« Object-Oriented Software Engineering (OOSE)
(iacobson etal,, 1992)

Each “persuasion” selling books, tools, seminars.

Late 1990's: joint effort of “the three amigos” UML O.x and 1.x

Standards published by Object ip (OMG), “i open
not-for-profit compuer industry consortium' Much criticised for lack of formality.

« Since 2005: UML 2.x, splitinto infra- and superstructure documents.

65/66

A Brief History of the Unified Modelling Language (UML)

Boxes/lines and finite automata are used to visualise software for ages.

1970's, Software C
— Idea: learn from engineering disci
Mod

s

ines to handle growing complexity.
g languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

Mid 1980 Statecharts (Harel, 1987), StateMate™ (Harel et al, 1990)

Early 1990's, advent of Object-Oriented-Analysis/Design/Programming
— Inflation of notations and methods, m=~+ =-~==i=~=*

« Obiect-Modeling Technique (OMT)
(Rumbaugh et al., 1990)
« Booch Method and Notation

Y

(Booch, 1993) ) KassoA \,H\, i
T ks :
/ r\x, ¥i IS f
A/ T
| e T T Ny,
RN . —  cgenum
- b Vemendung

65/66

UML Overview (omG, 2007, 684)

Figare A - The taxonomy of structurs and benaviorciagram
Dobing and Parsons (2006)

66766

A Brief History of the Unified Modelling Language (UML)

Boxes/lines and finite automata are used to visualise software for ages.
© 1970, Software Ci
— Idea: learn from engineering discij
Modelling languages:

s™

ines to handle growing complexity.
lowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

« Mid 1980s: Statecharts (Harel, 1987), StateMate™ (Harel et al., 1990)
« Early 1990's, advent of Object-Oriented-Analysis/Design/Programming
~ Inflation of notations and methods, most prominent:
« Object-Modeling Technique (OMT) wecse ol
(Rumbaugh et al., 1990)
« Booch Method and Notation
(Booch, 1993)

« Obiject-Oriented Software Engineering (OOSE)
(iacobson et . 1992) sy | ety

Each “persuasion” selling books, tools, seminars. . o
o [eAl |5

o s o
objct model ol
mocel




