Softwaretechnik / Software-Engineering

Lecture 13: Behavioural Software Modelling

2017-07-06

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal
Albert-Ludwigs-Universität Freiburg, Germany

Topic Area Architecture & Design: Content

- Introduction and Vocabulary
- Software Modelling I
 1. views and viewpoints, the 4+1 view
 2. model-driven/-based software engineering
 3. Modelling structure
 a) (simplified) class diagrams
 b) (simplified) object diagrams
 c) (simplified) object constraint logic (OCL)
 d) Unified Modelling Language (UML)

- Principles of Design
 1. modularity, separation of concerns
 2. information hiding and data encapsulation
 3. abstract data types, object orientation
 4. Design Patterns

- Software Modelling II
 1. Modelling behaviour
 a) communicating finite automata
 b) Uppaal query language
 c) basic state-machines
 d) an outlook on hierarchical state-machines
Design Patterns

- Strategy, Examples

Communicating Finite Automata (CFA)
 - concrete and abstract syntax,
 - networks of CFA,
 - operational semantics.

Transition Sequences

Deadlock, Reachability

Uppaal
 - tool demo (simulator),
 - query language,
 - CFA model-checking.

CFA at Work
 - drive to configuration, scenarios, invariants
 - tool demo (verifier).

CFA vs. Software
• In a sense the same as architectural patterns, but on a lower scale.
• Often traced back to (Alexander et al., 1977; Alexander, 1979).

Design patterns ... are descriptions of communicating objects and classes that are customized to solve a general design problem in a particular context. A design pattern names, abstracts, and identifies the key aspects of a common design structure that make it useful for creating a reusable object-oriented design. (Gamma et al., 1995)

Example: Pattern Usage and Documentation

Example: Strategy

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>The only difference between similar classes is that they solve the same problem by different algorithms.</td>
<td>- Have one class StrategyContext with all common operations.</td>
</tr>
<tr>
<td></td>
<td>- Another class Strategy provides signatures for all operations to be implemented differently.</td>
</tr>
<tr>
<td></td>
<td>- From Strategy, derive one sub-class ConcreteStrategy for each implementation alternative.</td>
</tr>
<tr>
<td></td>
<td>- StrategyContext uses concrete Strategy-objects to execute the different implementations via delegation.</td>
</tr>
</tbody>
</table>

Structure

```plaintext
StrategyContext
  + contextInterface()

Strategy
  - algorithm()

ConcreteStrategy1
  + algorithm()

ConcreteStrategy2
  + algorithm()
```

Example: Pattern Usage and Documentation

Pattern usage in JHotDraw framework ([HotDraw, 2007](#)) ([Diagram: (Ludewig and Lichter, 2013)](#))

Strategy

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>The only difference between similar classes is that they solve the same problem by different algorithms.</td>
<td>- Have one class StrategyContext with all common algorithms.</td>
</tr>
<tr>
<td></td>
<td>- Another class Strategy provides signatures for all operations to be implemented differently.</td>
</tr>
<tr>
<td></td>
<td>- From Strategy, derive one sub-class ConcreteStrategy for each implementation alternative.</td>
</tr>
<tr>
<td></td>
<td>- StrategyContext uses concrete Strategy-objects to execute the different implementations via delegation.</td>
</tr>
</tbody>
</table>
Pattern usage in JHotDraw framework ([JHotDraw, 2007]) (Diagram: [Ludewig and Lichter, 2013])

Observer

| Problem | Multiple objects need to adjust their state if one particular other object is changed. |
| Example | All GUI object displaying a file system need to change if files are added or removed. |

State

| Problem | The behaviour of an object depends on its internal state. |
| Example | The effect of pressing the room ventilation button depends (among others?) on whether the ventilation is on or off. |
Pattern usage in JHotDraw framework ([JHotDraw, 2007] [Diagram: (Ludewig and Lichter, 2013)])

Mediator

Problem
Objects interacting in a complex way should only be loosely coupled and be easily exchangeable.

Example
Appearance and state of different means of interaction (menus, buttons, input fields) in a graphical user interface (GUI) should be consistent in each interaction state.

Other Patterns: Singleton and Memento

Singleton

Problem
Of one class, exactly one instance should exist in the system.

Example
Print spooler.

Memento

Problem
The state of an object needs to be archived in a way that allows to re-construct this state without violating the principle of data encapsulation.

Example
Undo mechanism.
“The development of design patterns is considered to be one of the most important innovations of software engineering in recent years.”

(Ludewig and Lichter, 2013)

Advantages:
- (Re-)use the experience of others and employ well-proven solutions.
- Can improve on quality criteria like changeability or re-use.
- Provide a vocabulary for the design process, thus facilitates documentation of architectures and discussions about architecture.
- Can be combined in a flexible way, one class in a particular architecture can correspond to roles of multiple patterns.
- Helps teaching software design.

Disadvantages:
- Using a pattern is not a value as such. Having too much global data cannot be justified by “but it’s the pattern Singleton”.
- Again: reading is easy, writing need not be.

Here: Understanding abstract descriptions of design patterns or their use in existing software may be easy — using design patterns appropriately in new designs requires (surprise, surprise) experience.

Quality Criteria on Architectures
Quality Criteria on Architectures

- **testability**
 - architecture design should keep testing (or formal verification) in mind (buzzword "design for verification").
 - high locality of design units may make testing significantly easier (module testing).
 - particular testing interfaces may improve testability (e.g., allow injection of user input not only via GUI; or provide particular log output for tests).

- **changeability, maintainability**
 - most systems that are used need to be changed or maintained, in particular when requirements change.
 - risk assessment: parts of the system with high probability for changes should be designed such that changes are possible with acceptable effort (abstract, modularise, encapsulate).

- **portability**
 - porting: adaptation to different platform (OS, hardware, infrastructure).
 - systems with a long lifetime may need to be adapted to different platforms over time, infrastructure like databases may change (→ introduce abstraction layer).

Development Approaches

- **top-down** risk: needed functionality hard to realise on target platform.
- **bottom-up** risk: lower-level units do not "fit together".
- **inside-out** risk: user interface needed by customer hard to realise with existing system,
- **outside-in** risk: elegant system design not reflected nicely in (already fixed) UI.
Content

- Design Patterns
 - Strategy, Examples

- Communicating Finite Automata (CFA)
 - concrete and abstract syntax,
 - networks of CFA,
 - operational semantics.

- Transition Sequences

- Deadlock, Reachability

- Uppaal
 - tool demo (simulator),
 - query language,
 - CFA model-checking.

- CFA at Work
 - drive to configuration, scenarios, invariants
 - tool demo (verifier).

- CFA vs. Software
Communicating Finite Automata

presentation follows (Olderog and Dierks, 2008)
Channel Names and Actions

To define communicating finite automata, we need the following sets of symbols:

- A set \((a, b \in \text{Chan})\) of **channel names** or **channels**.

- For each channel \(a \in \text{Chan}\), two **visible actions**: \(a?\) and \(a!\) denote **input** and **output** on the channel \((a?, a! \notin \text{Chan})\).

- \(\tau \notin \text{Chan}\) represents an **internal action**, not visible from outside.

- \((\alpha, \beta \in \text{Act}) := \{a? \mid a \in \text{Chan}\} \cup \{a! \mid a \in \text{Chan}\} \cup \{\tau\}\) is the set of **actions**.

- An alphabet \(B\) is a set of **channels**, i.e. \(B \subseteq \text{Chan}\).

- For each alphabet \(B\), we define the corresponding **action set**
 \[
 B_{??} := \{a? \mid a \in B\} \cup \{a! \mid a \in B\} \cup \{\tau\}.
 \]

 Note: \(\text{Chan}_{??} = \text{Act}\).
Let \((v, w \in V)\) be a set of \((\text{finite domain})\) integer variables.

By \((\varphi \in \Psi(V))\) we denote the set of \textbf{integer expressions} over \(V\) using function symbols \(+, -\) and relation symbols \(<, \leq\).

- A modification on \(v\) is of the form
 \[v := \varphi, \quad v \in V, \quad \varphi \in \Psi(V). \]

By \(R(V)\) we denote the set of all modifications.

- By \(\vec{r}\) we denote a finite list \(\langle r_1, \ldots, r_n \rangle, n \in \mathbb{N}_0\), of modifications \(r_i \in R(V)\).
 \(\vec{r}\) is called \textbf{reset vector} (or \textbf{update vector}).
 \(\langle \rangle\) is the empty list \((n = 0)\).

- By \(R(V)^*\) we denote the set of all such finite lists of modifications.

Communicating Finite Automata

Definition. A **communicating finite automaton** is a structure

\[A = (L, B, V, E, \ell_{\text{ini}}) \]

where

- \((\ell \in L)\) \(L\) is a finite set of \textbf{locations} (or \textbf{control states}).
- \(B \subseteq \text{Chan}\),
- \(V\): a set of data variables,
- \(E \subseteq L \times B \times \Phi(V) \times R(V)^* \times L\): a finite set of \textbf{directed edges} such that
 \((\ell, \alpha, \varphi, \vec{r}, \ell') \in E \land \text{chan}(\alpha) \in U \implies \varphi = \text{true}.\)
 Edges \((\ell, \alpha, \varphi, \vec{r}, \ell')\) from location \(\ell\) to \(\ell'\) are labelled with an \textbf{action} \(\alpha\), a guard \(\varphi\), and a list \(\vec{r}\) of \textbf{modifications}.
- \(\ell_{\text{ini}}\) is the \textbf{initial location}.

Operational Semantics of Networks of CFA

Definition.
Let $A_i = (L_i, B_i, V_i, E_i, \ell_{ini}), 1 \leq i \leq n,$ be communicating finite automata.

The operational semantics of the network of CFA $\mathcal{C}(A_1, \ldots, A_n)$ is the labelled transition system

$$T(\mathcal{C}(A_1, \ldots, A_n)) = (Conf, Chan \cup \{\tau\}, \lambda, \rightarrow, \lambda \in Chan \cup \{\tau\}, C_{ini})$$

where
- $V = \bigcup_{i=1}^{n} V_i$ is the set of variables,
- $Conf = \{ (\ell, \nu) | \ell_i \in L_i, \nu : V \rightarrow 2^V \}$,
- $C_{ini} = (\vec{\ell}_{ini}, \nu_{ini})$ with $\nu_{ini}(v) = 0$ for all $v \in V$.

The transition relation consists of transitions of the following two types.
• \(\nu : V \to \mathcal{D}(V) \) is a **valuation** of the variables.

• A valuation \(\nu \) of the variables canonically assigns an integer value \(\nu(\varphi) \) to each integer expression \(\varphi \in \Phi(V) \).

• \(\models \subseteq (V \to \mathcal{D}(V)) \times \Phi(V) \) is the canonical **satisfaction relation** between valuations and integer expressions from \(\Phi(V) \).

• Effect of modification \(r \in R(V) \) on \(\nu \), denoted by \(\nu[r] \):
 \[
 \nu[r]_v := \begin{cases}
 \nu(\varphi), & \text{if } a = v, \\
 \nu(a), & \text{otherwise}
 \end{cases}
 \]

• We set \(\nu[\langle r_1, \ldots, r_n \rangle] := \nu[r_1][\ldots][r_n] = ((\nu[r_1])[r_2]) \ldots [r_n]. \)
 That is, modifications are executed sequentially from left to right.

Operational Semantics of Networks of CFA

• An **internal transition** \(\langle \ell, \nu \rangle \xrightarrow{\tau} \langle \ell', \nu' \rangle \) occurs if there is \(i \in \{1, \ldots, n\} \) and
 • there is a \(\tau \)-edge \((\ell_i, \tau, \varphi, \vec{r}, \ell'_i) \in E_i \) such that
 • \(\nu \models \varphi \),
 “source valuation satisfies guard”
 • \(\vec{\ell} = \ell_i :\ell'_i \),
 “automaton \(i \) changes location”
 • \(\nu' = \nu[\vec{r}] \),
 “\(\nu' \) is the result of applying \(\vec{r} \) on \(\nu \)”

• A **synchronisation transition** \(\langle \vec{\ell}, \nu \rangle \xrightarrow{b} \langle \vec{\ell}', \nu' \rangle \) occurs if there are \(i, j \in \{1, \ldots, n\} \) with \(i \neq j \) and
 • there are edges \((\ell_i, b! , \varphi_i, \vec{r}_i, \ell'_i) \in E_i \) and \((\ell_j, b? , \varphi_j, \vec{r}_j, \ell'_j) \in E_j \) such that
 • \(\nu \models \varphi_i \land \varphi_j \),
 “source valuation satisfies guards (\\!)”
 • \(\vec{\ell} = \ell_i :\ell'_i | \ell_j :\ell'_j \),
 “automaton \(i \) and \(j \) change location”
 • \(\nu' = \nu[\vec{r}_i][\vec{r}_j] \),
 “\(\nu' \) is the result of applying first \(\vec{r}_i \) and then \(\vec{r}_j \) on \(\nu \)”

This style of communication is known under the names “**rendezvous**, "synchronous"”, “**blocking**” communication (and possibly many others).
Transition Sequences

- A transition sequence of $C(A_1, \ldots, A_n)$ is any (in)finite sequence of the form

$$\langle \ell_0, \nu_0 \rangle \xrightarrow{\lambda_1} \langle \ell_1, \nu_1 \rangle \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle \xrightarrow{\lambda_3} \ldots$$

with

- $\langle \ell_0, \nu_0 \rangle = C_{\text{ini}}$.
- for all $i \in \mathbb{N}$, there is λ_{i+1} in $T(C(A_1, \ldots, A_n))$ with $\langle \ell_i, \nu_i \rangle \xrightarrow{\lambda_{i+1}} \langle \ell_{i+1}, \nu_{i+1} \rangle$.

Example

ChoicePanel: (simplified)

![Diagram of the ChoicePanel](Image)

User:

![Diagram of the User](Image)
Deadlock

- A configuration \((\bar{\ell}, \nu)\) of \(C(A_1, \ldots, A_n)\) is called deadlock if and only if there are no transitions from \((\bar{\ell}, \nu)\), i.e. if
 \[
 \neg \exists \lambda \in \Lambda \exists (\bar{\ell}', \nu') \in \text{Conf} \cdot (\bar{\ell}, \nu) \xrightarrow{\lambda} (\bar{\ell}', \nu').
 \]
 The network \(C(A_1, \ldots, A_n)\) is said to have a deadlock if and only if there is a reachable configuration \((\bar{\ell}, \nu)\) which is a deadlock.

Reachability

- A configuration \((\bar{\ell}, \nu)\) is called reachable (in \(C(A_1, \ldots, A_n)\)) from \((\bar{\ell}_0, \nu_0)\) if and only if there is a transition sequence of the form
 \[
 (\bar{\ell}_0, \nu_0) \xrightarrow{\lambda_1} (\bar{\ell}_1, \nu_1) \xrightarrow{\lambda_2} (\bar{\ell}_2, \nu_2) \xrightarrow{\lambda_3} \ldots \xrightarrow{\lambda_n} (\bar{\ell}_n, \nu_n) = (\bar{\ell}, \nu).
 \]

- A configuration \((\bar{\ell}, \nu)\) is called reachable (without "from") if and only if it is reachable from \(C_{\text{init}}\).

- A location \(\ell \in L_i\) is called reachable if and only if any configuration \((\bar{\ell}, \nu)\) with \(\ell_i = \ell\) is reachable, i.e. there exist \(\ell'\) and \(\nu\) such that \(\ell_i = \ell\) and \((\bar{\ell}, \nu)\) is reachable.
Uppaal

(Larsen et al., 1997; Behrmann et al., 2004)

Tool Demo
Consider $\mathcal{N} = C(A_1, \ldots, A_n)$ over data variables V.

- **basic formula:**

 $\text{atom} ::= A_i.\ell \mid \varphi \mid \text{deadlock}$

 where $\ell \in L_i$ is a location and φ an expression over V.

- **configuration formulae:**

 $\text{term} ::= \text{atom} \mid \text{not term} \mid \text{term}_1 \text{ and term}_2$

- **existential path formulae:**

 $\text{e-formula} ::= \exists \Diamond \text{term} \quad \text{(exists finally)}$

 $\mid \exists \Box \text{term} \quad \text{(exists globally)}$

- **universal path formulae:**

 $\text{a-formula} ::= \forall \Diamond \text{term} \quad \text{(always finally)}$

 $\mid \forall \Box \text{term} \quad \text{(always globally)}$

 $\mid \text{term}_1 \rightarrow \text{term}_2 \quad \text{(leads to)}$

- **formulae (or queries):**

 $F ::= \text{e-formula} \mid \text{a-formula}$

Satisfaction of Uppaal Queries by Configurations

- The satisfaction relation

 $(\vec{\ell}, \nu) \models F$

 between configurations

 $(\vec{\ell}, \nu) = ((\ell_1, \ldots, \ell_n), \nu)$

 of a network $C(A_1, \ldots, A_n)$ and formulae F of the Uppaal logic

 is defined **inductively** as follows:

 - $(\vec{\ell}, \nu) \models \text{deadlock}$

 iff $(\vec{\ell}, \nu)$ is a deadlock configuration.

 - $(\vec{\ell}, \nu) \models A_i.\ell$

 iff $\ell_i = \ell$

 - $(\vec{\ell}, \nu) \models \varphi$

 iff $\nu \models \varphi$

 - $(\vec{\ell}, \nu) \models \text{not term}$

 iff $(\vec{\ell}, \nu) \not\models \text{term}$

 - $(\vec{\ell}, \nu) \models \text{term}_1 \text{ and term}_2$

 iff $(\vec{\ell}, \nu) \models \text{term}_1$ and $(\vec{\ell}, \nu) \models \text{term}_2$
Example: Computation Paths vs. Computation Tree

ChoicePanel:

User:

Example: Computation Paths vs. Computation Graph

(or: Transition Graph)
Satisfaction of Uppaal Queries by Configurations

Exists finally:
- \((\vec{e}_0, \nu_0) \models \exists ♦ \text{term} \) iff \(\exists \text{path } ξ \text{ of } N \text{ starting in } (\vec{e}_0, \nu_0) \exists i \in N_0 \cdot ξ_i \models \text{term} \)

"some configuration satisfying term is reachable"

Example: \((\vec{e}_0, \nu_0) \models \exists ♦ \varphi \)

Satisfaction of Uppaal Queries by Configurations

Exists globally:
- \((\vec{e}_0, \nu_0) \models \exists □ \text{term} \) iff \(\exists \text{path } ξ \text{ of } N \text{ starting in } (\vec{e}_0, \nu_0) \forall i \in N_0 \cdot ξ_i \models \text{term} \)

Example: \((\vec{e}_0, \nu_0) \models \exists □ \varphi \)
Satisfaction of Uppaal Queries by Configurations

Exists globally:
- \(\langle \vec{v}_0, \nu_0 \rangle |\exists \square term \) iff \(\exists \) path \(\xi \) of \(\mathcal{N} \) starting in \(\langle \vec{v}_0, \nu_0 \rangle \)
 \(\forall i \in \mathbb{N}_0 \! \cdot \! \xi^i |\satisfies term \)

"on some computation path, all configurations satisfy \(term \)"

Example: \(\langle \vec{v}_0, \nu_0 \rangle |\exists \Box \varphi \)

Satisfaction of Uppaal Queries by Configurations

- **Always globally:**
 - \(\langle \vec{v}_0, \nu_0 \rangle |\forall \square term \) iff \(\langle \vec{v}_0, \nu_0 \rangle \not|\exists \Diamond \neg term \)

 "not (some configuration satisfying \(\neg term \) is reachable)"
 or: "all reachable configurations satisfy \(term \)"

- **Always finally:**
 - \(\langle \vec{v}_0, \nu_0 \rangle |\forall \Diamond term \) iff \(\langle \vec{v}_0, \nu_0 \rangle \not|\exists \Box \neg term \)

 "not (on some computation path, all configurations satisfy \(\neg term \))"
 or: "on all computation paths, there is a configuration satisfying \(term \)"
Leads to:

- \(\langle \vec{e}_0, \nu_0 \rangle \models term_1 \rightarrow term_2 \) iff \(\forall \text{ path } \xi \text{ of } \mathcal{N} \text{ starting in } \langle \vec{e}_0, \nu_0 \rangle \forall i \in \mathbb{N}_0 \cdot \xi^i \models term_1 \implies \xi^i \models \forall \emptyset term_2 \)

"on all paths, from each configuration satisfying term_1, a configuration satifying term_2 is reachable" (response pattern)

Example: \(\langle \vec{e}_0, \nu_0 \rangle \models \varphi_1 \rightarrow \varphi_2 \)

CFA Model-Checking

Definition. Let \(\mathcal{N} = \mathcal{C}(A_1, \ldots, A_n) \) be a network and \(F \) a query.

(i) We say \(\mathcal{N} \) satisfies \(F \), denoted by \(\mathcal{N} \models F \), if and only if \(C_{ini} \models F \).

(ii) The **model-checking problem** for \(\mathcal{N} \) and \(F \) is to decide whether \((\mathcal{N}, F) \in \models \).

Proposition. The model-checking problem for communicating finite automata is **decidable**.
Content

- Design Patterns
 - Strategy, Examples

- Communicating Finite Automata (CFA)
 - concrete and abstract syntax,
 - networks of CFA,
 - operational semantics.

- Transition Sequences

- Deadlock, Reachability

- Uppaal
 - tool demo (simulator),
 - query language,
 - CFA model-checking.

- CFA at Work
 - drive to configuration, scenarios, invariants
 - tool demo (verifier).

- CFA vs. Software

CFA and Queries at Work
Model Architecture — Who Talks What to Whom

- **Shared variables:**
 - bool water_enabled, soft_enabled, tea_enabled;
 - int w = 3, s = 3, t = 3;

- **Note:** Our model does not use scopes ("information hiding") for channels. That is, 'Service' could send 'WATER' if the modeler wanted to.

Design Sanity Check: Drive to Configuration

- **Question:** Is it (at all) possible to have no water in the vending machine model? (Otherwise, the design is definitely broken.)

- **Approach:** Check whether a configuration satisfying

\[w = 0 \]

is reachable, i.e. check

\[N_{VM} \models \exists \diamond w = 0. \]

for the vending machine model \(N_{VM} \).
Design Check: Scenarios

- **Question**: Is the following existential LSC satisfied by the model? (Otherwise, the design is definitely broken.)

- **Approach**: Use the following newly created CFA 'Scenario' instead of User and check whether location end_of_scenario is reachable, i.e. check

\[N_{VM}' |= \exists \text{Scenario.end_of_scenario}. \]

for the modified vending machine model \(N_{VM}' \).

Design Verification: Invariants

- **Question**: Is it the case that the "tea" button is only enabled if there is €1.50 in the machine? (Otherwise, the design is broken.)

- **Approach**: Check whether the implication

\[\text{tea_enabled} \implies \text{CoinValidator.have_c150} \]

holds in all reachable configurations, i.e. check

\[N_{VM} |= \forall \Box \text{tea_enabled imply CoinValidator.have_c150} \]

for the vending machine model \(N_{VM} \).
Design Verification: Sanity Check

- **Question**: Is the “tea” button ever enabled? (Otherwise, the considered invariant \(\text{tea_enabled} \implies \text{CoinValidator_have_c150} \) holds vacuously.)

- **Approach**: Check whether a configuration satisfying \(\text{water_enabled} = 1 \) is reachable. Exactly like we did with \(w = 0 \) earlier.

Design Verification: Another Invariant

- **Question**: Is it the case that, if there is money in the machine and water in stock, that the “water” button is enabled?

- **Approach**: Check

\[
\mathcal{N}_{VM} \models \forall (\text{CoinValidator_have_c50} \lor \text{CoinValidator_have_c100} \lor \text{CoinValidator_have_c150}) \implies \text{water_enabled}.
\]
Recall: Universal LSC Example

LSC: buy water
- **AC:** true
- **AM:** invariant I: strict

User
- **CoinValidator**
- **ChoicePanel**
- **Dispenser**

$$\neg (C_{50} \lor E_{1} \lor p_{SOFT} \lor p_{TEA} \lor p_{FILLUP})$$

$$d_{WATER} = OK \land \neg (d_{Soft} \lor d_{TEA})$$

Uppaal Architecture

Java
- **server**
- **verifyta**

C++
- yes/no
- don't know
Tell Them What You’ve Told Them…

- A network of communicating finite automata
 - describes a labelled transition system.
 - can be used to model software behaviour.

- The Uppaal Query Language can be used to
 - formalize reachability ($\exists ♦ CF, ∀ □ CF, …$) and
 - leadsto ($CF_1 \rightarrow CF_2$) properties.

- Since the model-checking problem of CFA is decidable,
 - there are tools which automatically check
 whether a network of CFA satisfies a given query.

- Use model-checking, e.g., to
 - obtain a computation path to a certain configuration
 (drive-to-configuration).
 - check whether a scenario is possible.
 - check whether an invariant is satisfied.
 (If not, analyse the design further using the obtained counter-example).
References