17 -2017-07-24 - main -

Softwaretechnik / Software-Engineering

Lecture 17: Wrapup & Questions

2017-07-24

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Topic Area Code Quality Assurance: Content

17 - 2017-07-24 - Sblockcontent -

e Introduction and Vocabulary
o Test case, test suite, test execution.
o Positive and negative outcomes.
e Limits of Software Testing
e Glass-Box Testing
o Statement-, branch-, term-coverage.
o Testing: Rest

e When to stop testing?
o Model-based testing
o Testing in the development process

e Program Verification

o partial and total correctness,
o Proof System PD.

o Other Approaches
o Runtime verification.
o Review

o Software quality assurance wrap-up

2/69

17 -2017-07-24 - Scontent -

Content

o Formal Program Verification
e Proof System PD

e The Verifier for Concurrent C
o Assertions, Modular Verification, VCC

o Runtime-Verification

o Assertions, LSC-Observers

o Reviews

o Roles and artefacts
o Review procedure
o Stronger and weaker variants

e Code QA Techniques Revisited

o Test, Runtime-Verification, Review,
o Static Checking, Formal Verification

o Do’s and Don'ts in Code QA
o Dependability

Recall: Deterministic Programs, Correctness

17 - 2017-07-24 - Srecall -

Deterministic Programs

Syntax

Example

§:= skip | u:= 1| 51:5; | if B then S else S, fi | while B do 51 od

where u € Vis a variable, tis a type

Semantics: (s induced by the following transition relation) = o - V/ — D(V)
e

) (skip, o) = (E, o) P

i) (=1, 0) = (B, olu = o(0)])

i o

i) (while B do § od, A5

Wil (while Bdo S od, o) =+ (E, o).ifo |£ B,

2 denotes the empty program; define I7;

S1, ohifo = B.
L o).ito i B,
ile Bdo § od, o).if o |- B.

bl fon, 1 is a Bool
Bisa pr

Consider program

S=al0] = 1:a[l] := 0:whileals] £ 0doz := = +10d

andastate o with o |- & = 0.

(0, 0550)

5. E = S.

Note: the first component of (S, o) is a program (structural operational semantics (SOS)).

Input/Output Semantics of Deterministic Programs

Definition.
Let S be a deterministic program.

0] ics of partial correctness

(5,0) A2,

(af1] := 0: while afe] # 0 dox := = + 1 od, o[al0] := 1))
(while alz] £ 0dogz =z + 1od, o')

(T= 7+ Lwhileals] £ 0doz i= 2 + L od, o)
(whileala] # 0do =z + 1 od, o'[z := 1])

(B, o[z :=1))

] = tfalt] = 0]

Correctness of Deterministic Programs

Definition.

= cnd e

fost ~condbin
jariables V/, and p and / ' V.

LetSbea

with{(M ﬂS]»(a) = {71, 0) »°(E, 7)}.

MIS]: S 2%

&=y

(i) The semantics of total correctness is the function

Mia[S]: 5 = 2% U {oc}

with(Mei[5)() = MIS1(#) U {0 | S can diverge from o}
o is an error state representing divergence.

Note: M.:[S] (o) has exactly one element, M [S] (o) at most one.

(i) The correctness formula

{p} S {a} (“Hoare triple”)

holds i the sense of partial correctness,
denoted by = {p} $ {q}. Fand only if

(MIS)IpD < la)

We say § s partially correct wit. pand q.
(i) A correctness formula

{p} 5 {a}

holds in the sense of total correctness,
denoted by =1t {p} S {g}. if and only if

MuaSI(Ip)) < [al

We say s totally correct wrt. pand g

Example: M[S1](0) = Mit[$1](0) = {7 | (2) = o(z) A7(y) = o(2)?}. o€X

(Recall $ = y = wy:=(r~1) - a+9)

3/69

4/69

- 17 -2017-07-24 - main -

Proof-System PD

Pr oof-System PD (for sequential, deterministic programs)

-17-2017-07-24 - Spd -

Axiom 1: Skip-Statement

{p} skip {p}

Axiom 2: Assignment

{plu = 1t]} u:=t {p}

Rule 3: Sequential Composition

{p} Si{r}, {r} 52 {¢}

{p} S1; S2 {q}

Rule 4: Conditional Statement

{p A B} Si{q},{p A -B} S2 {q},

{p} if B then S; else S: fi {¢}

Rule 5: While-Loop

{p~ B} S {p}
{p} while Bdo S od {p A =B}

Rule 6: Consequence

p—pdpi} S{a}, a1 — ¢

{p} S{a}

Theorem. PD is correct (“sound”) and (relative) complete for partial correctness of determin-
istic programs, i.e. -pp {p} S {q}ifand only if = {p} S {q}.

5/69

6/69

Example Proof

ore —.BD =:SP

—_——~ et
DIV =a:=0;b:=2; whileb>ydob:=b—y;a:=a+1 od
(The first (textually represented) program that has been formally verified (?).

Wecanprove E={z>0Ay>0}DIV{a-y+b=azAb<y}
by showing Fpp {t >0Ay>0}DIV{a-y+b=xAb<y}, ie,derivabilityinPD:
| ——

=:pD =:¢qP
(2)
{PA(BP)} SP {P} (R5) (3)
(1) P — P, {P}while BP do SP od {P A ~(BP)}, P A—(BP) = ¢P &6
{pP} SP {P}, {P} while BP do SP od {¢P} R3)
{pP} SP; while BP do SP od {¢P}
4) {p} S1{r}, {r} S2{q} {pA B} S {p}
(A0HEE o ok B T 515 5 fa) e s RS EE T
8 {pA B} S1{q}, {p A =B} S> {q} p—pu, {m}S{n}t, o —4q
R2){plu:=hui=t{p} RO S else S8 (g} O {0} S {a}
B 7769
bl
Example Proof Cont’d
@
(PA(b>y)}bi=b—yai=a+1{P} 5 3)
Q) PP {Piwhileb>ydobi=b=yia=a+lod{PA-b2y} PA-by) way+b=anb<y
(£>0Ay>0}a:=0;b:=x{P}, {P}whileb>ydob:=b—y; a:=a+lod{a-y+b=xzAb<y}

(R3)
{£>0Ay>0}a:=0; b:=a; whileb>ydob:=b—y;a:=a+1lod{a-y+b=zAb<y}

In the following, we show

(1) Fpp {z >0Ay >0}a:=0; b:=z{P},

(2) Fpp{PAb>y}b:=b—y; a:=a+1{P},
B)EPA-(b>y)—a-y+b=aAb<y.

As loop invariant, we choose (creative act!):

P=a-y+b=2Ab>0

8/69

Proof of (1)

{p1 B} S1{a}, {p A ~B} S> {q}

(A1) {p} skip {p} (R4)

17 -2017-07-24 - Spd -

{p} if B then S; else S fi {q}

{pA B} S {p}
{p} while Bdo S od {p A =B}

R3) {p} 1 {r}, {r} Sz {q} (Rey 2 L {p1} S{ar}, a1 = q

(A2) {p[u := t]} u:=t {p} (RS)

{p} S1; 52 {a} {p} S {a}
o (1) claims:
Fep {z>0Ay>0}a:=0; b:=z{P}
where P=a-y+b=xzAb>0.
=TT T NN P
- T
ebFpp{0-y+ax=zAx>0}a:=0{a-y+xz=xAxz>0} by(A2),
-
(F[b}’:ﬂ)
Pla:-ol)

9/69

Proof of (1)

{p1 B} S1{a}, {p A =B} S> {q}

(A1) {p} skip {p} (R4)

17 -2017-07-24 - Spd -

{p}if B then S; else S> fi {¢}

{pA B} S{p}
{p} while Bdo S od {p A ~B}

p—=p1, {p1} S{a}, a1 — q

(A2) {p[u := t]} u:=t {p} (RS)
(R3) P S1ir}, {r} S2 {a}

(Ré)

{p} S1; S2 {q} {r} S {q}
o (1) claims:
Fpp {z >0Ay>0}a:=0; b:=z{P}
where P=a-y+b=xzAb>0.
r

—
ebFpp{0-y+ax=xzAx>0}a:=0{a-y+xz=xAxz>0} by(A2),

ebFppla-y+z=aAz>0}tb:=x{a-y+b=xAb>0} by(A2)
R
?Zb::)&} =P

9/69

Proof of (1)

7 -2017-07-24 -

Proof of (1)

(1) claims:

{p1 B} S1{a}, {p A ~B} S> {q}

(A1) {p} skip {p} (R4) (oY if B then 51 else 5 f {a]

{pA B} S{p}
{p} while Bdo S od {p A =B}
{p} 1 {r}, {r} Sz {q} p—p1, {p1} S{a}, a1 — a
B s st O) 540}

(A2) {p[u := t]} u:=t {p} (RS)

Fep {z>0Ay>0}a:=0; b:=z{P}

where P=a-y+b=xzAb>0.

Fro{0-y+xz=2A2x>0}a:=0{a-y+ax=xzAzxz>0} by(A2),

z=xzAzx>0}tb:=x{a-y+b=xAb>0} by(A2),

=P

thus,Fpp {O0-y+xz=2Ax>0}a:=0; b:=x{P} by(R3),/

9/69

17 -2017-07-24 - Spd -

(1) claims:

{p A B} Si{a}, {p A B} Sz {q}
{p}if B then S; else S> fi {¢}
AB}S
(A2) {plu := th} u =t {p} (RS} o> whilipB do}S o{g}{p A—BJ
{p} S1 {r}, {r} S2 {q} p—=p1, {p1} S{a}, a1 — q
s se i O {0} S 1}

(A1) {p} skip {p} (R4)

Fep {z >0Ay>0}a:=0; b:=z{P}

where P=a{y+b=xzAb>0.

Fro{0-y+xz=2Ax>0}a:=0{a-y+ax=xAz>0} by(A2),

Fep{a-y+xz=a2zAx>0}tb:=z{a-y+b=xAb>0} by(A2),

=P

thus,Fpp {0-y+x=2Ax>0}a:=0; b:=x {P} by(R3)

usingz >0Ay>0—0-y+z =z Az >0and P — P, weobtain

by (R6).

Fep {z >0Ay>0}a:=0; b:=z{P}

9/69

Substitution

The rule ‘Assighment’ uses (syntactical) substitution: {p[u := t]} u :=t {p}

(In formula p, replace all (free) occurences of (program or logical) variable u by term ¢.)

Defined as usual, only indexed and bound variables need to be treated specially:

azx [gizu+3| —> ayut3

azr A V)(\-EZ)(‘ Z)(x;:u.q—31 D A u+34 Va‘éz«&
+~x 30

c[x§ 20 [CEOK:Z:}I > (*=o?&9_: CZX])
t

3 10769

Substitution

The rule ‘Assignment’ uses (syntactical) substitution: {p[u := t]} u :=t {p}

(In formula p, replace all (free) occurences of (program or logical) variable u by term ¢.)

Defined as usual, only indexed and bound variables need to be treated specially:

Expressions: Formulae:

o plain variable z: z[u := t] = {t Hz=u e boolean expression p = s:

x , otherwise plu = t] = s[u = 1]
e constantc: e negation:
cu:=tl=ec (m@)[u:=1t] = —(q[u :=¢])
e constant op, terms s;: e conjunction etc.:
op(81,...,8n)[u:=1 (gAT)[u:=t
= op(sifu:=1t],...,sn[u:=1t]). =qlu:=t]Arfu:=t]
o conditional expression: e quantifier:
(B?s1:82)[u:=1] Vz:q)u:=t] =Vy:qlz :=ylu:=t¢
= (Blu:=1t]?s1[u:=1t]:s2[u:=1t]) y fresh (notiin ¢, ¢, u), same type as .
o indexed variable, u plain or u = b[t1,...,tm]and a # b:
(a[s1y..-ysn))|u:=t] = alsiu:=1],...,snfu:=1]])
3 o indexed variable, u = aft1, ..., tm]:
; (als1,...,sn)u:=1t] = (AL silu:=t]=1t;7¢ :alsifu:=1t],...,sn[u :=1]])

10769

Example Proof Cont’d

(2)

/ {PA(b>ytbi=b—y; a:=a+1{P}) (3)
(1) P — P, {P}whileb>ydob:=b—y;a:=a+1od{PA-(b>y)} 1’A‘*(b2g)*)u-y+b:1‘/\b<y(Re)
{z>0Ay>0}a:=0; b:=x{P}, {P} whileb>ydob:=b—y;a:=atlod{a-y+b=zAb<y}

(R3)

{£>0Ay>0}a:=0; b:=a; whileb>ydob:=b—y;a:=a+lod{a-y+b==zAb<y}

In the following, we show

() Fpp{z > 0Ay >0} a:=0;b:=a{P}

(2) Fpp{PAb>y}tb:=b—y; a:=a+1{P},
B)EPA-GbBb>Y) ma-y+b=azAb<y.

As loop invariant, we choose (creative act!):

P=a-y+b=2Ab0>0

) {p} 81 {r}, {r} S2 {a} {rA B} S {p}
(A1) {p} skip {p} (R3) {p} S1; S2 {q} G2} {p} while Bdo S od {p A ~B}
{pA B} S1{q}, {pA B} S2 {q} p—p1, {p1} S{a}, 1 = ¢
(A2 {plui=t]}ui=t{p} R4 {p} if B then S; else S- fi {q} (Re) {p} S {q}

11769

Proof of (2) o) sbip (R A1), (A BY S)

{p}if B then S; else S> fi {¢}
AB}S
(A2) {plu := th} u =t {p} (RS} o> whil{epB do}S o{g}{p ~—B}
{p} S1 {r}, {r} S2 {q} p—=p1, {p1} S{a}, a1 — q
s se i O {0} S 1}

o (2) claims:
Fpo {PAb>y}b:=b—y; a:=a+1{P}
where P=a-y+b=xzAb>0.

8

ebFpp{la+1)- y+(b—y)=a2zA(b—y)>0}b:=b—y{(a+1)-y+b=

b=z Ab>0}
by (A2),

ebFpp{(a+1)-y+b=2Ab>0}a:=a+1{a-y+b=xAb>0} by(A2),
P
o bpp{(a+1)-y+(b—y)=xzA(b—y)>0}tb:=b—y; a:=a+1{P} by(R3)

17 -2017-07-24 - Spd -

12/69

Proof of (2) W o) sbip Ry 2ABYS1), (A B) S)

{p} if B then S; else S fi {q}

AB}S
(A2) {plu =t} u =t {p} R) 7z whilipB do}S 0{5}{17 A-B}

{p} S1 {r}, {r} S2{q} p—=p1, {p1}S{n}, a1 = 4g
) s) 5 {a}

o (2) claims:
Fpo {PAb>y}b:=b—uy; a::a+1{P}/
where P=a-y+b=xzAb>0.

ebep{(lat) y+ -y =an(b=y) >0tbi=b-y{(a+1)-y+b=aAb>0}
by (A2),

o bpp{(a+1)-y+b=zAb>0}ta:=a+1{a-y+b=xzAb>0} by(A2),
=P

b—y)=azA(b—y)>0}b:=b—y; a:=a+1{P} by(R3),

e Frpfla+1)-y

o usingPAb>y
A

(a+1)-y+(b—y)=zA(b—y)>0and P — P we obtain,

Fpo {PAb>y}b:=b—y; a:=a+1{P}
PR =

‘ by (R6). m
b 12/69
b
Example Proof Cont’d
(1)/
/ {(PAMBZy}bi=b—y; a:=a+1{P} " (3)
(1) PP, {P}whileb>ydob:=b—y; a:=a+1od{PA~(b>y} PAo(b>y) waytb=znb<y
{x>0Ay>0}a:=0; b:=xz{P}, {P}whileb>ydob:=b—y;a:=a+1lod{a-y+b=xAb<y}

{x>0Ay>0}a:=0; b:=x; whileb>ydob:=b—y; a:=a+1lod{a-y+b=aAb<y} (RB)

In the following, we show

() Fpp {z>0Ay>0}a:=0; b:=z{P},
(2) Frpp {PAbD>y}b:=b—y; a::a+1{P},‘/
B EPA-(b>y) sa-y+b=xAb<uy.

P~ ————
7
As loop invariant, we choose (creative act!):

P=a-y+b=a2Ab>0

) {p} S1{r}, {r} S2{q} {p A B} S {p}
(A1) {p} skip {p} R 5 s 1a) (R) Lo while B do S od {p A <B]
{pA B} S1{q}, {p A =B} S> {q} p—=pu, {m}S{n}t, o —q
(A2) {plu =} ui=t{p} RO S else Sy 8 (g} O o1 S {a}

17 -2017-07-24 - Spd -

13/69

Proof of (3)

17 -2017-07-24 - Spd -

(3) claims
EPA=(b>y)—a-y+b=xAb<y.

whereP=a-y+b=2Ab>0.

Proof: easy.

14/69

Back to the Example Proof

-17-2017-07-24 - Spd -

We have shown:

(1) Fpp {x>0Ay>0}a:=0; b:=z{P},

(2) Fpp {PAb>y}b:=b—y; a:=a+1{P},
B EPA-(b>y) wa-y+b=xAb<y.

and
@ /

/ {(PAMB>y}bi=b-y; a:=a+1{P} (3)
[0

(RS)

P — P, {P}whileb>ydob:=b—y;a:=a+1lod{PA-(b>y)}, PA-(b>y)—a-y+b=axAb<y
{r>0Ay>0}a:=0; b:=xz{P}, {P} whileb>ydob:=b—y;a:=a+lodf{a-y+b=aAb<y}

(R6)

(R3)
{e>0Ay>0}a:=0; b:=ux; whileb>ydob:=b—y;a:=a+lod{a-y+b=aAb<y}

thus

Fpp {x >0Ay >0} a:=0; b:=x; whileb>ydob:=b—y; a:=a+1lod{ay+b=xAb<y}

=DIV

and thus (since PD is sound). DIV is gartiallx correct wrt.

e pre-condition:z > 0Ay >0,
o post-conditionia-y+b=xAb<y.

IOW: whenever DIV is called with z and y suchthatz > 0 Ay > 0,
then (if DIV terminates)a -y + b =z A b < y will hold.
AN~ T

15/69

Once Again

-17-2017-07-24 - Spd -

e P=a-y+b=zAb>0

(A1) {p} skip {p}
(A2) {p[u := 1]} u := t {p}
{p} S1{r}, {r} Sz {q}
) {p} S1; S2 {q}

R4) {pA B} S1 {a}, {p A =B} Sz {a}

{zx>0Ay>0}
{0-y+xz=xz Az >0}

{p} if B then S else S5 fi {q}

®R5) {pA B} S {p}

{p} while Bdo S od {p A ~B}
°a:=0; }(A-Z) Ry P Pu P} Sk a1~ g
{a-y+z=zNnz>0} ®3) (({5) {p} S {a}
o b:=ux; J(kz) k
{a-y+b=xAb>0} a
(P}
e whileb > ydo
{PAb>y}
{(a+1)-y+ G-y =aAb- >0})
o b:=b—y;
{(a+1)- y+b—z/\b>0}
o a:=a+1 (42) OQS)
{a- y+b—a:/\b>0}
{Pr}
e od

{PA=(b2>y)}

{a-y+b:a:/\b<y}>

Literature Recommendation

-17-2017-07-24 - Spd -

'Programm-
verif‘ kation

mwm

16/69

17/69

- 17 - 2017-07-24 - Scontent -

- 17 - 2017-07-24 - main -

Content

o Formal Program Verification
e Proof System PD

e The Verifier for Concurrent C

e Assertions, Modular Verification, VCC

o Runtime-Verification

e Assertions, LSC-Observers

o Reviews

o Roles and artefacts
o Review procedure
o Stronger and weaker variants

e Code QA Techniques Revisited

o Test, Runtime-Verification, Review,
e Static Checking, Formal Verification

o Do’s and Don'ts in Code QA
o Dependability

Assertions

18/69

19/69

Assertions

17-2017-07-24 - Sa

o Extend the syntax of deterministic programs by
S :=.--| assert(B)
¢ and the semantics by rule
(assert(B), o) — (F, o)ifoc = B.

(If the asserted boolean expression B does not hold in state o, the empty program is not reached;
otherwise the assertion remains in the first component: abnormal program termination).

Extend PD by axiom:

(A7) {p} assert(p) {p}

e Thatis, if p holds before the assertion, then we can continue with the derivation in PD.

If p does not hold, we “get stuck” (and cannot complete the derivation).

e Sowe derive {true} = := 0; assert(z = 27) {true} in PD.

Modular Reasoning

17 - 2017-07-24 - main

20769

21769

Modular Reasoning

17 -2017-07-24 - Smodular -

We can add another rule for calls of functions f : F' (simplest case: only global variables):

{p} F {q}
R 51 70 {0y

“If we have - {p} F' {q} for the implementation of function f,
thenif f is called in a state satisfying p, the state after return of f will satisfy ¢’

pis called pre-condition and ¢ is called post-condition of f.

Example: if we have

o {true} read_number {0 < result < 108}

e {0 <z A0<y}add{(old(x) + old(y) < 108 A result = old(x) + old(y)) V result < 0}
o {true} display {(0 < old(sum) < 108 = "old(sum)”) A (old(sum) < 0 = ”-E-")}

we may be able to prove our pocket calculator correct.

| int x, y. sum:

12345678 4 int main() {
+ 27 4

while (true) (
x = read_number ();

718|9]0

y = read_number ();
4(5]6/= q sum = add(): // add 'x" and 'y’

11213 = | display (); // display ‘sum’
1])

22/69

Return Values and Old Values

- 17 - 2017-07-24 - Smodular -

e For modular reasoning, its often useful to refer in the post-condition to

o the return value as result,
e the values of variable z at calling time as old(z).

o Can be defined using auxiliary variables:

o Transform function
Tf(){...;return expr;}

(over variables V' = {v1, ..., v, }; where result, v?'* ¢ V) into
Tf0{
o= wp; .00 =y,

o
result :=expr;

return result;

}
over V! =V U {v | v € V} U {result}.

o Then old(z) is just an abbreviation for z:°“. .
/69

17 -2017-07-24 - main

17 -2017-07-24 - Svee

The Verifier for Concurrent C

vcC

o The Verifier for Concurrent C (VCC) basically implements Hoare-style reasoning.

e Special syntax:

e #include <vcc.h>

e _(requires p) - pre-condition, pis (basically) a C expression

o _(ensures ¢) - post-condition, g is (basically) a C expression

o _(invariant expr) - loop invariant, ezpr is (basically) a C expression
o _(assert p) —intermediate invariant, p is (basically) a C expression

o _(writes &v) —VCC considers concurrent C programs; we need to declare for each procedure
which global variables it is allowed to write to (also checked by VCC)

e Special expressions:
o \thread_local(&v) — no other thread writes to variable v (in pre-conditions)
® \old(v) - the value of v when procedure was called (useful for post-conditions)

o \result - return value of procedure (useful for post-conditions)

24/69

25/69

VCC Syntax Example

17 -2017-07-24 - Svcc -

1| #include <vcc.h> ¥

2

3| int a, b;

4 ?a:z,— Yz !
5| void div(int x, int vy) /

6 _(requires x >= 0 && y >= 0)

7 _(en§uresa*y+b==x&&b<y)“‘—f>
8 _(writes &a) y

9 _(writes &b)

o {

1 ' a = 0;

12 b = x;

3| | while (b >= y)

14 _(invariant a * y + b == x & b >= 0)

15 { —

16 b=>b-y;

17 ' a=a+1;

18 }

19}

DIV =a:=0; b:=x; whileb>ydob:=b—y; a:=a+1od

{x>0Ay>0}DIV{z>0Ay >0}

VCC Web-Interface

- 17 -2017-07-24 - Svec -

Vee @ risedfun from Mier.. x| &

(&) (i) risedfun.com/vecra

clea 3

LA,

o7 —cor el By

VCC

Does this C program always work?
#include <vcc.h>

int a, b:

_(requires x >= 0 && y >= 0}
_(ensures a *y +b == x && b < y)
3 _(writes &a)
9 _(writes &b)

1
2
3
4
5 void div(int x, inty)
3
ki
8

12 b=x;

13 while (b >= y)

14 _(invariant a *y + b == x 8& b >= 0)
{

»' shortout: ALt+B

samples about vcc - A verifier for Concurrent C
hello a a
1search
safestring
bozosort
spinlock

tools developer about

rise4fun © 2016 Nicrosoft Corporation - terms of use - privacy & cookies

code of conduct

Example program DIV: http://rise4fun.com/Vcc/4Kqe

26/69

27/69

Interpretation of Results

17 -2017-07-24 - Suce

o VCCresult: “verification succeeded”

e We can only conclude that the tool
- under its interpretation of the C-standard, under its platform assumptions (32-bit), etc. -
claims that there is a proof for = {p} DIV {q}.

e May be due to an error in the tool! (Thats a false negative then.)

Yet we can ask for a printout of the proof and check it manually
(hardly possible in practice) or with other tools like interactive theorem provers.

o Note: |= {false} f {q} holds.

That is, a mistake in writing down the pre-condition can make errors in the program go undetected!

o VCCresult: “verification failed”

e May be a false positive (wrt. the goal of finding errors).
The tool does not provide counter-examples in the form of a computation path,
it (only) gives hints on input values satisfying p and causing a violation of g.

e — try to construct a (true) counter-example from the hints.
or: make loop-invariant(s) (or pre-condition p) stronger, and try again.

e Other case: “timeout” etc. - completely inconclusive outcome.

VCC Features

17 -2017-07-24 - Svee

o For the exercises, we use VCC only for sequential, single-thread programs.
e VCC checks a number of implicit assertions:

o no arithmetic overflow in expressions (according to C-standard),
o array-out-of-bounds access,

o NULL-pointer dereference,

e and many more.

o Verification does not always succeed:

o The backend SMT-solver may not be able to discharge proof-obligations
(in particular non-linear multiplication and division are challenging);

¢ In many cases, we need to provide loop invariants manually.

e VCCalso supports:

e concurrency:
different threads may write to shared global variables; VCC can check whether concurrent access to
shared variables is properly managed;

o data structure invariants:
we may declare invariants that have to hold for, e.g., records (e.g. the length field I is always equal to
the length of the string field str); those invariants may temporarily be violated when updating the
data structure.

e and much more.

28/69

29/69

Tell Them What You’ve Told Them. . .

- 17-2017-07-24 - Sttwytt -

17 - 2017-07-24 - Scontent -

Content

Testing:
o Define criteria for “testing done” (like coverage, or cost per error).

e Process: tester and developer should be different persons.

Formal Verification:

o There are more approaches to software quality assurance
than just testing.

o For example, program verification.

e Proof System PD can be used

e toprove
o thata given program is
o correct wrt. its specification.

This approach considers all inputs inside the specification!

o Tools like VCC implement this approach.

30/69

o Formal Program Verification
(e Proof System PD

o The Verifier for Concurrent C

(e Assertions, Modular Verification, VCC

e Runtime-Verification
(® , LSC-Observers

o Reviews

(e Roles and artefacts
(e Review procedure
(e Stronger and weaker variants

o Code QA Techniques Revisited

(e Test, Runtime-Verification, Review,
(e Static Checking, Formal Verification

o Do’s and Don'ts in Code QA
o Dependability

31769

- 17 -2017-07-24 - main -

Run-Time Verification

17 - 2017-07-24 - Sruntime -

3269
Run-Time Verification: ldea
. P Software S
Assume, there is a function f in software S with the following specification: W
e pre-condition: p, post-condition: g.
Computation paths of .S may look like this:
ay (o) Qn—1 call f f returns
o) —> 01 —> 02+ ———> 0pn —> 0Opnt1* " *Om ———> Om+1"""
Assume there are functions check, and checkg,
which check whether p and ¢ hold at the current program state,
and which do not modify the program state (except for program counter.
Idea: create software S’ by
(i) extending S by implementations (i) call check,, right after entering f,
of checky, and checky, (iii) call check, right before returning from f.
For S’, obtain computation paths like:
n— cal check check returns
an—1>012>02"'a 5o i On+1 - U;+1"'Um L o, [et Om+41"""

If checky, and check 4 notify us of violations of p or g,
then we are notified of f violating its specification when running S’ (= at run-time).

33/69

Run-Time Verification: Example

- 17 - 2017-07-24 - Sruntime -

12345678
27

[
d -

1| int x, y, sum;
2)]]
3| int main() ; void verify_sum(;Z; :u,mz?t y.
4
El I
5 while (true) { »
= . 4 if (sum = (x+y)
6 x = read_number (); N 1 (x +y s 99999999
7 y = read_number (); . 58 1{sum < 1))
8 !
- . 7 {
109 sum = add{ x. 'y); 8 fprintf(stderr,
1 verify_sum(x, y. sum): 9 "verify_sum: _error\n");
n B ‘E abort ():
13 display (); ol
14 }
5|)

A Very Useful Special Case: Assertions

- 17 - 2017-07-24 - Sruntime -

o Maybe the simplest instance of runtime verification: Assertions.

o Available in standard libraries of many programming languages (C, C++, Java, ..

o For example, the C standard library manual reads:

ASSERT(3) Linux Programmer’s Manual ASSERT(3)
NAME

assert — abort the program if assertion is false

SYNOPSIS
#include <asserth>

void assert(scalar expression);

DESCRIPTION
[..] the macro assert() prints an error message to stan—
dard error and terminates the program by calling abort(3) if expression
is false (i.e., compares equal to zero).

The purpose of this macro is to help the programmer find bugs in his
program. The message "assertion failed in file foo.c, function
do_bar(), line 1287" is of no help at all to a user.

e In C code, assert can be disabled in production code (-D NDEBUG).

o Use java -ea

... to enable assertion checking (disabled by default).
(cf. https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html)

).

34/69

35/69

Assertions At Work

-17-2017-07-24 - Sruntime -

o The abstract f-example from run-time verification:
(specification: {p} f {q})

void f(...) {
assert(p);

assert(q);

e Compute the width of a progress bar:

ASSERT(3)

NAME

Linux Programmer's Manual ASSERT(3)

assert — abort the program i assertion s false

SYNOPSIS

#include <asserth>

void assert{scalar expression);

DESCRIPTION

[..] the macro assert() prints an erfor message to stan—

dard error and terminates the program by calling abort(3) f expression
i false (i.e. compares equal to zero).

The purpose of this macrois to help the programmer find bugs in his
program. The message "assertion failed in file fooc, function
do_bar(). line 1287"is of no help at all to a user.

—

Progress Bar

int window_right)

int progress_bar_width(int progress, int window_left,
assert(window_left <= window_right); /* pre—condition */
/* treat special cases O and 100 */
assert(O < progress && progress < 100); // extremal cases already treated
assert(window_left <=r && r <= window_right); /* post—condition */
return r;
}

Assertions At Work 11

- 17 - 2017-07-24 - Sruntime -

01
rightChild

parent

TreeNode

~key :int

inv: self.key <= rightChild.key 0)

&& self.key >= leftChild.key

01
leftchild Object

o Recall the structure model with Proto-OCL constraint from Exercise Sheet 4.

e Assume, we add a method set_key() to class TreeNode:

class TreeNode {

1
2

3 private int key;

4 TreeNode parent,

5

6 public int get_key ()
7

8

9 key = new_key;

10 }

o)

leftChild ,

rightChild;

{ return key; }

public void set_key(int new_key) {

e We can check consistency with the Proto-OCL constraint at runtime by using assertions:

1
2
3
4
5
6
7

public void set_key(int new_key) {

assert (parent == null || parent.get_key()

<= new_key

);

assert (leftChild == null || new_key <= leftChild.get_key());
assert (rightChild == null || new_key <= rightChild.get_key());

key = new_key;

}

36/69

37/69

More Complex Run-Time Verification: LSC Observers

-17-2017-07-24 - Sruntime -

o
o=
=
=
=
a
pury
o

ChoicePanel:

WA water_selected
WATER? e
DWATER AW wasar b s |

water_enabled

/[G| [Comaonor] [Chokepanet| [Dipenser | |
/ \
. / \
idle sopr Soft_selected ¢ request_sent !
soft_onabied & !
\ — pWdrEg
Y
\ water_in_stock
DOK? v
tea_enabled %
tea_selected 7 ity
7 iz
OK! ?
7 ol
‘water_enabled - false, A
soft_énabled := false, half_idle 7
tea_enabled := false - 7

$ $

st : { idle, wsel, ssel, tsel, regs, half };

take_event(E : { TAU, WATER, SOFT, TEA, ... }) { csor
bool stable = 1; - ~dWATERIA
switch (st) { csot e
case idle : csor A AWATERY A Tnyren n g,
@ ~ Nez VATER?
switch (E) { . 4 " ~dWATER?A
case VATER : WATERIA oKL A
if (water_enabled) { st := wsel; stable := 0; } w1 w2
. . AWATER?A
5 ~Gs0
OK! A s A
case SOFT : Ao —outpul_blocked
N C507 A1 WATER! A ¢,
case usel: ~WATER? A o1
switch (E) {
case TAU :

send_DVATERQ); st i= regs;
hey_observer_I_just_sent_DVATERQ) ;

38/69

Run-Time Verification: Discussion

o Experience:
During development, assertions for pre/post conditions and intermediate invariants are an
extremely powerful tool with a very attractive gain/effort ratio (low effort, high gain).
o Assertions effectively work as safe-guard against unexpected use of functions and regression,
e.g. during later maintenance or efficiency improvement.
o Can serve as formal (support of) documentation:
“Dear reader, at this point in the program, | expect condition expr to hold, because...”.

- 17 - 2017-07-24 - Sruntime -

39/69

By the Way: Development vs. Release Versions

-17-2017-07-24 - Sruntime -

17 - 2017-07-24 - Scontent -

e Development- vs. Release Versions:
e Common practice:
o development version with run-time verification enabled (cf. assert (3)),
o release version without run-time verification.
If W@ is enabled in a release version,

o software should terminate as gracefully as possible (e.g. try to save data),
o save information from assertion failure if possible for future analysis.

: with bad luck, the software only behaves well because of the run-time verification code...

Then disabling run-time verification “breaks” the software. Yet very complex run-time verification
ignificantly slow d the soft) ds to be disabled...
may significantly slow down the software, so needs to be disable assedd (% =0)/ k

45&6(%210)/, x

4069

Content

o Formal Program Verification
(e Proof System PD

o The Verifier for Concurrent C

(e Assertions, Modular Verification, VCC

e Runtime-Verification
(® , LSC-Observers

o Reviews

(e Roles and artefacts
(e Review procedure
(e Stronger and weaker variants

o Code QA Techniques Revisited

(e Test, Runtime-Verification, Review,
(e Static Checking, Formal Verification

o Do’s and Don'ts in Code QA
o Dependability

41769

- 17 -2017-07-24 - main -

Review

42/69

Recall: Three Basic Directions

-17 - 2017-07-24 - main -

all computation

paths satisfying the (ZxA)”

specification

expected \ defines
outcomes Soll _ﬂ

f / ™ ~
v / A S
;7 \ ~o
Y 7 \ ~
P // - C ’? \ > ~
~ \ N
E?// /// - — " \ \\ C 7
= =

execution of
(In, Soll) m

< \
27 \\ prove
7 SkE .
% V4 @& © O conclude
[S] € []

Reviewer
[-1 review
input —>D —s output 1 E ﬁa Ea“a
Testing Review Formal Verification

43/69

Reviews rev. item

\
\Q

[moderator] [author] [reviewer [transcript |

[

¢ Input to Review Session: ¢ Roles:

o Review item: can be every closed, Moderator: leads session, responsible for properly
human-readable part of software conducted procedure.
Fd°cum?”tati°”' module, test data, Author: (representative of the) creator(s) of the artefact
installation manual, etc) under review; is present to listen to the discussions;
Social aspect: it is an artefact can answer questions; does not speak up if not
which is examined, not the human asked.
(who created it). Reviewer(s): person who is able to judge the artefact

o Reference documents: need to under review; maybe different reviewers for different
enable an assessment aspects (programming, tool usage, etc.), at best

experienced in detecting inconsistencies or

(requirements specification, guidelines)
incompleteness.

(e.g. coding conventions), catalogue of
questions (“all variables initialised?”), Transcript Writer: keeps minutes of review session, can
etc) be assumed by author.

o The review team consists of everybody but the author(s).

- 17 - 2017-07-24 - Sreview -

44/69

Review Procedure Over Time

planning: reviews
need time in the
project plan. preparation:
reviewers investigate
review item.
areview is

review session:
———— reviewers report,
) ' Planning | evaluate, and
triggered, e.g, === document issues;
by a submission resolve open

oth >3 - Initiation .
o the revision - Preparation (2w) questions.
control system: -

the moderator = |~ Review Review
invites (include Session (2h) organisation
under guidance

review item in = =
invitation), and - 3rd hour” (1h) of moderator
missions. T~ P (2] Approval o 3rd hour”: time for
review item informal chat,
_____ 1 reviewers may state
|

proposals for
solutions or
improvements.

postparation: rework

review item;
analysis: improve responsibility of the
development and author(s).

review process.

o Reviewers re-assess reworked review item (until approval is declared).

45/69

Review Rules (7)

- 17 - 2017-07-24 - Sreview -

invitations, supervises the review session. velop solutions.

(i) The moderator may terminate the review if for the author(s).
conduction is not possible, e.g., due to in-

puts, preparation, or people missing. present her/his findings appropriately.

does not act as reviewer.

) . . e accept without changes,
(Exception: author may write transcript.)

e accept with changes,

(vi) Style issues (outside fixed conventions) ¢ donotaccept.

(i) The moderator organises the review, issues (vii) The review team is not supposed to de-

Issues are not noted down in form of tasks

(viii) Each reviewer gets the opportunity to

(iii) The review session is limited to 2 hours. (ix) Reviewers need to reach consensus on is-
If needed: organise more sessions. sues, consensus is noted down.

(iv) The review item is under review, (x) Issues are classified as:
not the author(s). o critical (review unusable for purpose),
Reviewers choose their words accordingly. o major (usability severely affected),
Aut.hor.s neither defend themselves nor the o minor (usability hardly affected),
review item. o good (no problem).

(v) Roles are not mixed up, e.g., the moderator (xi) The review team declares:

are not discussed. (xii) The protocol is signed by all participants.

Stronger and Weaker Review Variants

17 - 2017-07-24 - Sreview -

o Careful Reading (‘Durchsicht)

e done by developer,
e recommendation: “away from screen” (use print-out or different device and situation)

< , 1 e Designand Code Inspection (??)
o 9]
% | § e deluxevariant of review,
9] 9] e approx. 50% more time, approx. 50% more errors found.
o o
E 1 E . Review
o Structured Walkthrough
o simple variant of review:)
. XP’s pair programming
® developer moderates walkthrough-session, o o (“on-the-fly review?)
® developer presents artefact(s), y
s ® reviewer poses (prepared or spontaneous) questions,
é ® issues are noted down,
7]
a o Variation point: do reviewers see the artefact before the session?
< o less effort, less effective. : 8
£ .
:o: — : unclear reponsibilities; “salesman”-developer may trick reviewers. e
b .
v o Comment (‘'Stellungnahme)
(%]
L o colleague(s) of developer read artefacts,
o developer considers feedback.
— : low organisational effort;
— : choice of colleagues may be biased; no protocol;
consideration of comments at discretion of developer.

46/69

47/69

- 17 - 2017-07-24 - Scontent -

- 17 - 2017-07-24 - main -

Content

o Formal Program Verification
e Proof System PD

e The Verifier for Concurrent C

o Assertions, Modular Verification, VCC

o Runtime-Verification

o Assertions, LSC-Observers

o Reviews

o Roles and artefacts
o Review procedure
o Stronger and weaker variants

e Code QA Techniques Revisited

o Test, Runtime-Verification, Review,
e Static Checking, Formal Verification

o Do’s and Don'ts in Code QA
o Dependability

Code Quality Assurance Techniques Revisited

4869

49769

Techniques Revisited

auto- prove “can toolchain exhaus- prove partial entry
matic run’ considered tive correct results cost
Test (v) 4 4 X X v v
Runtime-
Verification
Review
Static Checking
Verification
Strengths:
o can be fully automatic (yet not easy for GUI programs);
o negative test proves “program not completely broken”, “can run” (or positive scenarios);
e final product is examined, thus toolchain and platform considered;
e one can stop at any time and take partial results;
o few, simple test cases are usually easy to obtain;
o provides reproducible counter-examples (good starting point for repair).
Weaknesses:
o (in most cases) vastly incomplete, thus no proofs of correctness;
o creating test cases for complex functions (or complex conditions) can be difficult;
o maintenance of many, complex test cases be challenging.
o executing many tests may need substantial time (but: can sometimes be run in parallel);
50769
Techniques Revisited
auto- prove “can toolchain exhaus- prove partial entry
matic run” considered tive correct results cost
Test (v) v 4 X X v v
Runtime- v (v) v (%) X v (v)
Verification
Review
Static Checking
Verification
Strengths:

o fully automatic (once observers are in place);

o provides counter-example;

o (nearly) final product is examined, thus toolchain and platform considered;
e one can stop at any time and take partial results;

Weaknesses:

o counter-examples not necessarily reproducible;
e may negatively affect performance;
e code is changed, program may only run because of the observers;
g o completeness depends on usage,
may also be vastly incomplete, so no correctness proofs;
o constructing observers for complex properties may be difficult,
one needs to learn how to construct observers.

50769

Techniques Revisited

S

auto-

toolchain

prove “can exhaus- prove partial entry
matic run’ considered tive correct results cost
Test (v) v v x X v v
Runtime- 4 (v) 4 (%) x v (v)
Verification
Review x X X (v) (v) v (v)
Static Checking
Verification
Strengths:
o human readers can understand the code, may spot point errors;
o reported to be highly effective;
e one can stop at any time and take partial results;
o intermediate entry costs;
Weaknesses:
e no tool support;
e no results on actual execution, toolchain not reviewed;
o human readers may overlook errors; usually not aiming at proofs.
o does (in general) not provide counter-examples,
developers may deny existence of error.
50769
Techniques Revisited
auto- prove “can toolchain exhaus- prove partial entry
matic run” considered tive correct results cost
Test (v) v v x X v v
Runtime- v (v) %4 (%) X v (v)
Verification
Review x X x (v) (v) v (v)
Static Checking 4 (X) b 4 4 (v) v (%)
Verification
Strengths:

o there are (commercial), fully automatic tools (lint, Coverity, Polyspace, etc.);
e some tools are complete (relative to assumptions on language semantics, platform, etc.);
o can be faster than testing;
o one can stop at any time and take partial results.

Weaknesses:

e no results on actual execution, toolchain not reviewed;

o can be very resource consuming (if few false positives wanted),
e.g., code may need to be “designed for static analysis”

o many false positives can be very annoying to developers (if fast checks wanted);
o distinguish false from true positives can be challenging;
o configuring the tools (to limit false positives) can be challenging.

50769

Techniques Revisited

auto- prove “can toolchain exhaus- prove partial entry

matic run’ considered tive correct results cost
Test (v) (4 4 X X v (4
Runtime- 4 (v) 4 (%) x v (v)
Verification
Review x x X (v) (v) v (v)
Static Checking 4 (x) x 4 (v) v (%)
Verification (v) X x v v (X) x

Strengths:

o some tool support available (few commercial tools);

complete (relative to assumptions on language semantics, platform, etc.);
thus can provide correctness proofs;
e can prove correctness for multiple language semantics and platforms at a time;

o can be more efficient than other techniques.

Weaknesses:

no results on actual execution, toolchain not reviewed;
e not many intermediate results: “half of a proof” may not allow any useful conclusions;

entry cost high: significant training is useful to know how to deal with tool limitations;

proving things is challenging: failing to find a proof does not allow any useful conclusion;

false negatives (broken program “proved” correct) hard to detect.

S

50769

Techniques Revisited

auto- prove “can toolchain exhaus- prove partial entry

matic run’ considered tive correct results cost
Test (v) 4 v X X 4 4
Runtime- (4 (v) v (%) X v (v)
Verification
Review X x X (v) (v) v (v)
Static Checking v (X) X v (v) 4 (X)
Verification (v) X X 4 v (X) x

50769

- 17 -2017-07-24 - main -

Dependability Case

51769

Proposal: Dependability Cases (?)

- 17 - 2017-07-24 - Sdepend -

¢ A dependable system is one you can depend on - that is, you can place your trust in it.

“Developers [should] express the critical properties
and make an explicit argument that the system satisfies them.”

Proposed Approach:
o Identify the critical requirements,
and determine what level of confidence is needed.
(Most systems do also have non-critical requirements.)
o Construct a dependability case, i.e.
an argument, that the software, in concert with other components,
establishes the critical properties.
o The dependability case should be

e auditable: can (easily) be evaluated by third-party certifier.

o complete: no holes in the argument;
any assumptions that are not justified should be noted
(e.g. assumptions on compiler, on protocol obeyed by users, etc.)

o sound: e.g. should not claim full correctness [...] based on nonexhaustive testing;
should not make unwarranted assumptions on independence of component failures;
etc.

52/69

Tell Them What You’ve Told Them. . .

-17-2017-07-24 - Sttwytt2 -

17 - 2017-07-24 - main -

o Runtime Verification

o (as the name suggests) checks properties at program run-time,
e generous use of assert’s can be a valuable safe-guard against

® regressions, usage outside specification, etc.
and serve as formal documentation of (intermediate) assumptions.
Very attractive effort / effect ratio.

o Review (structured examination of artefacts by humans)

o (mild variant) advocated in the XP approach,

e not uncommon:
lead programmer reviews all commits from team members,

o literature reports good effort/effect ratio achievable.

o All approaches to code quality assurance have their

e advantages and drawbacks.
o Which to use? It depends!

e Overall: Consider Dependability Cases
o an (auditable, complete, sound) argument,
that a software has the critical properties.

53/69

Looking Back:
17 Lectures on Software Engineering

54/69

Contents of the Course

-17 = 2017-07-24 - Scontall -

b - dE -

Customer Developer Customer Developer
announcement
(Lastenheft)

offer
(Pflichtenheft)

What Did We Do?

-17 - 2017-07-24 - Sresume -

Customer Developer
software contract
{incl. Pflichtenheft)

Developer Customer

software delivery

VL4 VL5

nodd

VL8 VL9

Requirements Engineering

VL10O VL1 VL12

Architecture & Design

VL13

VL14 ~ VL15

Introduction L1

Scales, Metrics, L 2

Costs L3

T1

Development L4

Process L 5

L 6:

T2

. L7

Requirements Lsg

Engi i :

ngineering Lo

T3

L10

Architecture & LN

Design L12

T 4

Software Hi
Modelling

L15:

T5:

Quality Assurance L16:

(Testing, Formal L 17:

Verification) L18:

Wrap-Up L19:

VL16

VL17

18.4., Mon
214, Thu
25.4., Mon
28.4., Thu
2.5, Mon
5.5, Thu
9.5, Mon
12.5., Thu
16.5., Mon
19.5., Thu
23.5., Mon
265, Thu

: 30.5, Mon

2.6, Thu
6.6, Mon
9.6., Thu
13.6., Mon
16.6., Thu

: 20.6., Mon

236, Thu
27.6., Mon

: 30.6., Thu

47, Mon
77., Thu
11.7., Mon
147, Thu
18.7., Mon
21.7, Thu

55/69

VL18

Code Quality Assurance

56/69

That’s Today’s Software Engineering — More or Less. ..

17 -2017-07-24 - main -

57/69

17 -2017-07-24 - main -

-17 - 2017-07-24 - main -

Questions?

Advertisements

59/69

60769

Advertisement

-17-2017-07-24 - main -

o Further studies:

Real-Time Systems — Winter 2017/18
(specification and verification of real-time systems)

Software Design, Modelling, and Analysis in UML (notin 2017/18)
(a formal, in-depth view on structural and behavioural modelling)

Cyber-Physical Systems | - Discrete Models
(more on variants of CFA and queries (LTL, CTL, CTL*))

Cyber-Physical Systems - Hybrid Models
(Modelling and analysis of cyber-physical systems with hybrid automata)

Program Verification
(the theory behind tools like VCC)

Formal Methods for Java
(JML and “VCC for Java”)

Decision Procedures
(the basis for program verification)

— https://swt.informatik.uni-freiburg.de/teaching

Advertisement

- 17 - 2017-07-24 - main -

e Individual Projects
(BSc/MSc project, Lab Project, BSc/MSc thesis)

o formal modelling of industrial case studies

o improving analysis techniques

e own topics

— contact us (3-6 months before planned start).

o Want to be a tutor, e.g. Software Engineering 20187

—_—

— contact us (around September / March).

61/69

62/69

Thanks For Your Participation. . .

e -
“‘_‘ -

e

References

17 - 2017-07-24 - main -

70/m

References

17 -2017-07-24 - main -

Fagan, M. (1976). Design and code inspections to reduce errors in program development. IBM Systems Journal,
15(3):182-211.

Fagan, M. (1986). Advances in software inspections. IEEE Transactions On Software Engineering, 12(7):744-751.
Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Commun. ACM, 12(10):576-580.
Jackson, D. (2009). A direct path to dependable software. Comm. ACM, 52(4).

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

7

