
Prof. Dr. A. Podelski, Sommersemester 2017
Dr. B. Westphal

Softwaretechnik/Software Engineering

http://swt.informatik.uni-freiburg.de/teaching/SS2017/swtvl

Exercise Sheet 1

Early submission: Wednesday, 2017-05-03, 12:00 Regular submission: Thursday, 2017-05-04, 12:00

Exercise 1 – Metrics (10)

1.1. Lines of Code Metrics

Consider the following lines of code metrics:

• LOC tot = Total number of lines of code

• LOC ne = Number of non-empty lines of code

• LOC pars = Number of lines of code that that do not consist entirely of comments or non-printable
characters.

(i) Calculate the value of the LOC metrics for the Java program in the file MyQuickSort.java

accompanying this exercise sheet. (2)

(ii) The LOC metrics are often used as derived measure for the complexity or effort required to
develop the code being measured.

In particular the family of LOC metrics is notorious for being subvertible. If a metric is subvert-
ible, its value can be manipulated to increase it arbitrarily while preserving the same program
semantics. I.e., for every program, there always exists a semantically equivalent program (that
performs the same computation, and thus should have needed roughly similar effort to develop)
but has substantially different metric values. Convince yourself of this claim for the case of
LOC pars : give two semantically equivalent programs with substantially (at least an order of
magnitude) different metric values. Can you recognize a pattern that allows you to increase the
value of the LOC pars metric to any number you wish? (2)

(iii) What is the value of the LOC metrics for the largest method you have programmed? Describe
briefly what the method does, the program to which it belongs and in what programming lan-
guage. (1)

1.2. Cyclomatic Complexity

Consider the cyclomatic complexity or McCabe metric.

(i) Construct the control flow graph (CFG) for the method quickSort of the class MyQuickSort in
the file accompanying this sheet and calculate the value of its cyclomatic complexity as shown
in the example of Fig. 1. (4)

(ii) In the example, we introduced additional, auxiliary nodes to the control flow graph that serve as
junction points for control paths, see e.g., the round node directly after node number 5. Another
possibility of constructing the CFG would be to directly connect the nodes representing program
locations. In our example, there would be a direct edge from node 5 to node 6 and from node 8
to node 6.

Does this choice of CFG construction alter the value of the cyclomatic complexity metric? Justify
your answer. (1)

1

http://swt.informatik.uni-freiburg.de/teaching/SS2017/swtvl

For program:

1 void i n s e r t i o nS o r t (int [] array) {
2 for (int i = 2 ; i < array . l ength ; i++) {
3 tmp = array [i] ;
4 array [0] = tmp ;
5 int j = i ;
6 while (j > 0 && tmp < array [j −1]) {
7 array [j] = array [j −1] ;
8 j−−;
9 }

10 array [j] = tmp ;
11 }
12 }

Cyclomatic complexity is defined for graph G corre-
sponding to the program as

v(G) = e− n + p

Number of edges: e = 11
Number of nodes: n = 6 + 2 + 2 = 10 (nodes are marked
with the corresponding line numbers)
External connections: p = 2

v(G) = 11 − 10 + 2 = 3

Corresponding graph G

1

2

3

4

5

8

7

6

10

Entry

Exit

Figure 1: Example of the calculation of cyclomatic complexity

2

