
–
8

–
2

0
17

-0
6

-0
1

–
m

ai
n

–

Softwaretechnik / Software-Engineering

Lecture 8: Use Cases and Scenarios

2017-06-01

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Topic Area Requirements Engineering: Content

–
8

–
2

0
17

-0
6

-0
1

–
S

b
lo

ck
co

n
te

n
t

–

2/46

• Introduction

• Requirements Specification

• Desired Properties

• Kinds of Requirements

• Analysis Techniques

• Documents

• Dictionary, Specification

• Specification Languages

• Natural Language

• Decision Tables

• Syntax, Semantics

• Completeness, Consistency, . . .

• Scenarios

• User Stories, Use Cases

• Live Sequence Charts

• Syntax, Semantics

• Working Definition: Software

• Discussion

VL 6

..

.

VL 7

..

.

VL 8

..

.

VL 9

..

.

–
8

–
2

0
17

-0
6

-0
1

–
m

ai
n

–

3/46

Structure of Topic Areas

–
1

–
2

0
17

-0
4

-2
4

–
S

cc
o

n
te

n
t

–

26/42

Example: Requirements Engineering

Vocabulary e.g. consistent,
complete, tacit, etc.

Techniques

informal

semi-formal

formal

In the course:

e.g. “Whenever a crash. . . ”

e.g. “Always, if hcrashi at t. . . ”

e.g. “� t, t� � Time • . . . ”

Use Cases

Pattern Language

Decision Tables
Live Sequence Charts

Content

–
8

–
2

0
17

-0
6

-0
1

–
S

co
n

te
n

t
–

4/46

• User Stories

• Use Cases

• Use Case Diagrams

• Sequence Diagrams

• A Brief History

• Live Sequence Charts

• Syntax:

• Elements, Locations,

• Towards Semantics:

• Cuts

• Firedsets

Scenarios

–
8

–
2

0
17

-0
6

-0
1

–
m

ai
n

–

5/46

Example: Vending Machine

–
8

–
2

0
17

-0
6

-0
1

–
S

sc
e

n
–

7/46

• Positive scenario: Buy a Softdrink

(i) Insert one 1 euro coin.

(ii) Press the ‘softdrink’ button.

(iii) Get a softdrink.

• Positive scenario: Get Change

(i) Insert one 50 cent and one 1 euro coin.

(ii) Press the ‘softdrink’ button.

(iii) Get a softdrink.

(iv) Get 50 cent change.

• Negative scenario: A Drink for Free

(i) Insert one 1 euro coin.

(ii) Press the ‘softdrink’ button.

(iii) Do not insert any more money.

(iv) Get two softdrinks.

Notations for Scenarios

–
8

–
2

0
17

-0
6

-0
1

–
S

sc
e

n
–

8/46

• The idea of scenarios (sometimes without negative or anti-scenarios)
(re-)occurs in many process models or software development approaches.

• In the following, we will discuss two-and-a-half notations
(in increasing formality):

• User Stories (part of Extreme Programming)

• Use Cases and Use Case Diagrams (OOSE)

• Sequence Diagrams (here: Live Sequence Charts (Damm and Harel, 2001))

User Stories

–
8

–
2

0
17

-0
6

-0
1

–
m

ai
n

–

9/46

User Stories (Beck, 1999)

–
8

–
2

0
17

-0
6

-0
1

–
S

u
se

rs
to

ri
e

s
–

10/46

“A User Story is a concise, written description of a piece of functionality
that will be valuable to a user (or owner) of the software.”

Per user story, use one file card with the user story, e.g. following the pattern:

As a [role] I want [something] so that [benefit].

and in addition:

• unique identifier (e.g. unique number),

• priority (from 1 (highest) to 10 (lowest))
assigned by customer,

• effort, estimated by developers,

• back side of file card:
(acceptance) test case(s),

i.e., how to tell whether the
user story has been realised.

Proposed card layout (front side):

priority unique identifier, name estimation

As a [role] I want [something] so that [benefit].

risk real effort

User Stories (Beck, 1999)

–
8

–
2

0
17

-0
6

-0
1

–
S

u
se

rs
to

ri
e

s
–

10/46

“A User Story is a concise, written description of a piece of functionality
that will be valuable to a user (or owner) of the software.”

Per user story, use one file card with the user story, e.g. following the pattern:

As a [role] I want [something] so that [benefit].

and in addition:

• unique identifier (e.g. unique number),

• priority (from 1 (highest) to 10 (lowest))
assigned by customer,

• effort, estimated by developers,

• back side of file card:
(acceptance) test case(s),

i.e., how to tell whether the
user story has been realised.

Proposed card layout (front side):

priority unique identifier, name estimation

As a [role] I want [something] so that [benefit].

risk real effort

Natural Language Patterns

–
6

–
2

0
16

-0
5

-1
2

–
S

sp
e

cl
an

g
–

33/37

Natural language requirements can be (tried to be) written as an instance of
the pattern “〈A〉 〈B〉 〈C〉 〈D〉 〈E〉 〈F 〉.” (German grammar) where

A clarifies when and under what conditions the activity takes place

B is MUST (obligation), SHOULD (wish), or WILL (intention);
also: MUST NOT (forbidden)

C is either “the system” or the concrete name of a (sub-)system

D one of three possibilities:

• “does”, description of a system activity,
• “offers”, description of a function offered by the system to somebody,
• “is able if”,

usage of a function offered by a third party, under certain conditions

E extensions, in particular an object

F the actual process word (what happens)

(Rupp and die SOPHISTen, 2009)

Example:

After office hours (= A), the system (= C) should (= B) offer to the operator (= D)
a backup (= F) of all new registrations to an external medium (= E).

User Stories: Discussion

–
8

–
2

0
17

-0
6

-0
1

–
S

u
se

rs
to

ri
e

s
–

11/46

✔ easy to create, small units

✔ close contact to customer

✔ objective / testable: by fixing test cases early

✘ may get difficult to keep overview over whole system to be developed
→ maybe best suited for changes / extensions (after first iteration).

✘ not designed to cover non-functional requirements and restrictions

✘ agile spirit: strong dependency on competent developers

✘ estimation of effort may be difficult

(Balzert, 2009)

Use Cases

–
8

–
2

0
17

-0
6

-0
1

–
m

ai
n

–

12/46

–
8

–
2

0
17

-0
6

-0
1

–
S

u
c

–

13/46

Use Case: Definition

–
8

–
2

0
17

-0
6

-0
1

–
S

u
c

–

14/46

use case — A sequence of interactions between an actor (or actors) and a system trig-
gered by a specific actor, which produces a result for an actor. (Jacobson, 1992)

More precisely:

• A use case has participants:
the system and at least one actor.

• Actor: an actor represents
what interacts with the system.

• An actor is a role, which a user or an external
system may assume when interacting with
the system under design.

• Actors are not part of the system,
thus they are not described in detail.

• Actions of actors are non-deterministic
(possibly constrained by domain model).

• A use case is triggered by a stimulus
as input by the main actor.

• A use case is goal oriented, i.e. the main actor
wants to reach a particular goal.

• A use case describes all interactions between
the system and the participating actors
that are needed to achieve the goal
(or fail to achieve the goal for reasons).

• A use case ends when the desired goal is
achieved, or when it is clear that the desired
goal cannot be achieved.

Use Case Example: ATM Authentication

–
8

–
2

0
17

-0
6

-0
1

–
S

u
c

–

15/46

h
tt

p
:/

/c
o

m
m

o
n

s.
w

ik
im

e
d

ia
.o

rg
(C

C
-b

y
-s

a
4

.0
, D

ir
k

In
go

Fr
an

ke
)

name Authentication

goal the client wants access to the ATM

pre-condition the ATM is operational, the welcome
screen is displayed, card and PIN of
client are available

post-condition client accepted,
services of ATM are offered

post-cond. in
exceptional case

access denied, card returned or
withheld, welcome screen displayed

actors client (main actor), bank system

open questions none

normal case 1. client inserts card

2. ATM read card,
sends data to bank system

3. bank system checks validity

4. ATM shows PIN screen

5. client enters PIN

6. ATM reads PIN,
sends to bank system

7. bank system checks PIN

8. ATM accepts and shows main menu

exception case 2a card not readable

2a.1 ATM displays “card not readable”

2a.2 ATM returns card

2a.3 ATM shows welcome screen

exc. case 2b card readable, but not ATM
card

exc. case 2c no connection to bank system

exc. case 3a card not valid or disabled

exc. case 5a client cancels

exc. case 5b client doesn’t react within 5 s

exc. case 6a no connection to bank system

exc. case 7a first or second PIN wrong

exc. case 7b third PIN wrong

(Ludewig and Lichter, 2013)

Use Case Diagrams

–
8

–
2

0
17

-0
6

-0
1

–
m

ai
n

–

16/46

Use Case Diagrams: Basic Building Blocks

–
8

–
2

0
17

-0
6

-0
1

–
S

u
cd

–

17/46

〈actor name〉
〈use case name〉

or: 〈use case name〉

Example: Use Case Diagram of the ATM Use Case

–
8

–
2

0
17

-0
6

-0
1

–
S

u
cd

–

18/46

Use Case Example: ATM Authentication

–
8

–
2

0
17

-0
6

-0
1

–
S

u
c

–

14/27

h
tt

p
:/

/c
o

m
m

o
n

s.
w

ik
im

e
d

ia
.o

rg
(C

C
-b

y
-s

a
4

.0
, D

ir
k

In
go

Fr
an

ke
)

name Authentication

goal the client wants access to the ATM

pre-condition the ATM is operational, the welcome
screen is displayed, card and PIN of
client are available

post-condition client accepted,
services of ATM are offered

post-cond. in
exceptional case

access denied, card returned or
withheld, welcome screen displayed

actors client (main actor), bank system

open questions none

normal case 1. client inserts card

2. ATM read card,
sends data to bank system

3. bank system checks validity

4. ATM shows PIN screen

5. client enters PIN

6. ATM reads PIN,
sends to bank system

7. bank system checks PIN

8. ATM accepts and shows main menu

exception case 2a card not readable

2a.1 ATM displays “card not readable”

2a.2 ATM returns card

2a.3 ATM shows welcome screen

exc. case 2b card readable, but not ATM
card

exc. case 2c no connection to bank system

exc. case 3a card not valid or disabled

exc. case 5a client cancels

exc. case 5b client doesn’t react within 5 s

exc. case 6a no connection to bank system

exc. case 7a first or second PIN wrong

exc. case 7b third PIN wrong

(Ludewig and Lichter, 2013)

Example: Use Case Diagram of the ATM Use Case

–
8

–
2

0
17

-0
6

-0
1

–
S

u
cd

–

18/46

Use Case Example: ATM Authentication

–
8

–
2

0
17

-0
6

-0
1

–
S

u
c

–

14/27

h
tt

p
:/

/c
o

m
m

o
n

s.
w

ik
im

e
d

ia
.o

rg
(C

C
-b

y
-s

a
4

.0
, D

ir
k

In
go

Fr
an

ke
)

name Authentication

goal the client wants access to the ATM

pre-condition the ATM is operational, the welcome
screen is displayed, card and PIN of
client are available

post-condition client accepted,
services of ATM are offered

post-cond. in
exceptional case

access denied, card returned or
withheld, welcome screen displayed

actors client (main actor), bank system

open questions none

normal case 1. client inserts card

2. ATM read card,
sends data to bank system

3. bank system checks validity

4. ATM shows PIN screen

5. client enters PIN

6. ATM reads PIN,
sends to bank system

7. bank system checks PIN

8. ATM accepts and shows main menu

exception case 2a card not readable

2a.1 ATM displays “card not readable”

2a.2 ATM returns card

2a.3 ATM shows welcome screen

exc. case 2b card readable, but not ATM
card

exc. case 2c no connection to bank system

exc. case 3a card not valid or disabled

exc. case 5a client cancels

exc. case 5b client doesn’t react within 5 s

exc. case 6a no connection to bank system

exc. case 7a first or second PIN wrong

exc. case 7b third PIN wrong

(Ludewig and Lichter, 2013)

client (main actor)
Authentication

bank system

Use Case Diagrams: More Building Blocks

–
8

–
2

0
17

-0
6

-0
1

–
S

u
cd

–

19/46

〈actor name〉
〈use case name〉

or: 〈use case name〉

More notation:

use case A

use case B

〈〈extends〉〉

use case A

use case B

〈〈uses〉〉 or 〈〈include〉〉

Use Case Diagram: Bigger Examples

–
8

–
2

0
17

-0
6

-0
1

–
S

u
cd

–

20/46

ATM

info services

print statement
[not auth.]

query balance
[print statement]

transactions

get cash

define stan-
ding order

basic services

authentication

〈〈extend〉〉

〈〈include〉〉

〈〈include〉〉

〈〈include〉〉

〈〈extend〉〉

(Ludewig and Lichter, 2013)

Customer and Developer Happy?

–
8

–
2

0
17

-0
6

-0
1

–
S

h
ap

p
y

–

21/46

Use Case Example: ATM Authentication

–
8

–
2

0
17

-0
6

-0
1

–
S

u
c

–

14/27

h
tt

p
:/

/c
o

m
m

o
n

s.
w

ik
im

e
d

ia
.o

rg
(C

C
-b

y
-s

a
4

.0
, D

ir
k

In
go

Fr
an

ke
)

name Authentication

goal the client wants access to the ATM

pre-condition the ATM is operational, the welcome
screen is displayed, card and PIN of
client are available

post-condition client accepted,
services of ATM are offered

post-cond. in
exceptional case

access denied, card returned or
withheld, welcome screen displayed

actors client (main actor), bank system

open questions none

normal case 1. client inserts card

2. ATM read card,
sends data to bank system

3. bank system checks validity

4. ATM shows PIN screen

5. client enters PIN

6. ATM reads PIN,
sends to bank system

7. bank system checks PIN

8. ATM accepts and shows main menu

exception case 2a card not readable

2a.1 ATM displays “card not readable”

2a.2 ATM returns card

2a.3 ATM shows welcome screen

exc. case 2b card readable, but not ATM
card

exc. case 2c no connection to bank system

exc. case 3a card not valid or disabled

exc. case 5a client cancels

exc. case 5b client doesn’t react within 5 s

exc. case 6a no connection to bank system

exc. case 7a first or second PIN wrong

exc. case 7b third PIN wrong

(Ludewig and Lichter, 2013)

(1.) Observables:

• event insert_card

• condition card_rdbl

• event send_data

• event data_valid

• event pin_screen

(2.) Finite Automaton:

q1

q2

q3

q4

q5

insert_card ∧ card_rdbl

q
insert_card ∧¬ card_rdbl

send_data

data_valid

pin_screen

–
8

–
2

0
17

-0
6

-0
1

–
S

h
ap

p
y

–

22/46

Content

–
8

–
2

0
17

-0
6

-0
1

–
S

co
n

te
n

t
–

23/46

• User Stories

• Use Cases

• Use Case Diagrams

• Sequence Diagrams

• A Brief History

• Live Sequence Charts

• Syntax:

• Elements, Locations,

• Towards Semantics:

• Cuts

• Firedsets

Sequence Diagrams

–
8

–
2

0
17

-0
6

-0
1

–
m

ai
n

–

24/46

A Brief History of Sequence Diagrams

–
8

–
2

0
17

-0
6

-0
1

–
S

sd
–

25/46

• Message Sequence Charts,
ITU standardized in different versions (ITU Z.120, 1st edition:
1993); often accused of lacking a formal semantics.

• Sequence Diagrams of UML 1.x
(one of three main authors: I. Jacobson)

• SDs of UML 2.x address some issues, yet the standard
exhibits unclarities and even contradictions
(Harel and Maoz, 2007; Störrle, 2003)

• For the lecture, we consider

Live Sequence Charts (LSCs)

(Damm and Harel, 2001; Klose, 2003; Harel and Marelly, 2003),
LSCs have a common fragment with UML 2.x SDs:
(Harel and Maoz, 2007).

msc event_ordering

proc_a proc_b proc_c

m1

m2

m3

m4

in(m4)

(a) (ITU-T, 2011)

sd UserAccepted

:User :ACSystem

Code d=duration

CardOut {0..13}

OK
Unlock

{d..3*d}

t=now

{t..t+3}

DurationConstraint

TimeObservation

TimeConstraint

DurationObservation

(OMG, 2007)

LSC: L
AM: invariant I: strict

I1 I2

c1

I3

A

B C

D
E

c2 ∧ c3

Live Sequence Charts: Syntax (Body)

–
8

–
2

0
17

-0
6

-0
1

–
m

ai
n

–

26/46

LSC Body Building Blocks

–
8

–
2

0
17

-0
6

-0
1

–
S

ls
cs

y
n

–

27/46

LSC Body: Abstract Syntax

–
8

–
2

0
17

-0
6

-0
1

–
S

ls
cs

y
n

–

29/46

Definition. [LSC Body]
Let E be a set of events and C a set of atomic propositions, E ∩ C = ∅.

An LSC body over E and C is a tuple

((L,�,∼), I,Msg,Cond, LocInv,Θ)

where

• L is a finite, non-empty of locations with

• a partial order � ⊆ L × L,

• a symmetric simultaneity relation ∼ ⊆ L × L disjoint with �, i.e. � ∩ ∼ = ∅,

• I = {I1, . . . , In} is a partitioning of L; elements of I are called instance line,

• Msg ⊆ L × E × L is a set of messages with (l, E, l′) ∈ Msg only if (l, l′) ∈ ≺ ∪ ∼;

message (l, E, l′) is called instantaneous iff l ∼ l′ and asynchronous otherwise,

• Cond ⊆ (2L \ ∅) × Φ(C) is a set of conditions
with (L, φ) ∈ Cond only if l ∼ l′ for all l 6= l′ ∈ L,

• LocInv ⊆ L × {◦, •} × Φ(C) × L × {◦, •} is a set of local invariants
with (l, ι, φ, l′, ι′) ∈ LocInv only if l ≺ l′ , ◦: exclusive, •: inclusive,

• Θ : L ∪ Msg ∪ Cond ∪ LocInv → {hot, cold}
assigns to each location and each element a temperature.

From Concrete to Abstract Syntax

–
8

–
2

0
17

-0
6

-0
1

–
S

ls
cs

y
n

–

30/46

• locations L,

• � ⊆ L× L, ∼ ⊆ L× L

• I = {I1, . . . , In},

• Msg ⊆ L× E × L,

• Cond ⊆ (2L \ ∅)× Φ(C)

• LocInv ⊆ L× {◦, •} × Φ(C)× L × {◦, •},

• Θ : L ∪Msg ∪ Cond ∪ LocInv → {hot, cold}.

I1 I2

c1

I3

A

B
C

D

E

c2 ∧ c3

c4

From Concrete to Abstract Syntax

–
8

–
2

0
17

-0
6

-0
1

–
S

ls
cs

y
n

–

30/46

• locations L,

• � ⊆ L× L, ∼ ⊆ L× L

• I = {I1, . . . , In},

• Msg ⊆ L× E × L,

• Cond ⊆ (2L \ ∅)× Φ(C)

• LocInv ⊆ L× {◦, •} × Φ(C)× L × {◦, •},

• Θ : L ∪Msg ∪ Cond ∪ LocInv → {hot, cold}.

I1 I2

c1

I3

A

B
C

D

E

c2 ∧ c3

c4

l1,0

l1,1

l1,2

l1,3

l1,4

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

l3,2

l3,3

• L = {l1,0, l1,1, l1,2, l1,3, l1,2, l1,4, l2,0, l2,1, l2,2, l2,3, l3,0, l3,1, l3,2, l3,3}

LSC Body: Abstract Syntax

–
8

–
2

0
17

-0
6

-0
1

–
S

ls
cs

y
n

–

31/46

Definition. [LSC Body]
Let E be a set of events and C a set of atomic propositions, E ∩ C = ∅.

An LSC body over E and C is a tuple

((L,�,∼), I,Msg,Cond, LocInv,Θ)

where

• L is a finite, non-empty of locations with

• a partial order � ⊆ L × L,

• a symmetric simultaneity relation ∼ ⊆ L × L disjoint with �, i.e. � ∩ ∼ = ∅,

• I = {I1, . . . , In} is a partitioning of L; elements of I are called instance line,

• Msg ⊆ L × E × L is a set of messages with (l, E, l′) ∈ Msg only if (l, l′) ∈ ≺ ∪ ∼;

message (l, E, l′) is called instantaneous iff l ∼ l′ and asynchronous otherwise,

• Cond ⊆ (2L \ ∅) × Φ(C) is a set of conditions
with (L, φ) ∈ Cond only if l ∼ l′ for all l 6= l′ ∈ L,

• LocInv ⊆ L × {◦, •} × Φ(C) × L × {◦, •} is a set of local invariants
with (l, ι, φ, l′, ι′) ∈ LocInv only if l ≺ l′ , ◦: exclusive, •: inclusive,

• Θ : L ∪ Msg ∪ Cond ∪ LocInv → {hot, cold}
assigns to each location and each element a temperature.

From Concrete to Abstract Syntax

–
8

–
2

0
17

-0
6

-0
1

–
S

ls
cs

y
n

–

32/46

• locations L,

• � ⊆ L× L, ∼ ⊆ L× L

• I = {I1, . . . , In},

• Msg ⊆ L× E × L,

• Cond ⊆ (2L \ ∅)× Φ(C)

• LocInv ⊆ L× {◦, •} × Φ(C)× L × {◦, •},

• Θ : L ∪Msg ∪ Cond ∪ LocInv → {hot, cold}.

I1 I2

c1

I3

A

B
C

D

E

c2 ∧ c3

c4

l1,0

l1,1

l1,2

l1,3

l1,4

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

l3,2

l3,3

• L = {l1,0, l1,1, l1,2, l1,3, l1,2, l1,4, l2,0, l2,1, l2,2, l2,3, l3,0, l3,1, l3,2, l3,3}

• l1,0 ≺ l1,1 ≺ l1,2 ≺ l1,3, l1,2 ≺ l1,4, l2,0 ≺ l2,1 ≺ l2,2 ≺ l2,3, l3,0 ≺ l3,1 ≺ l3,2 ≺ l3,3,
l1,1 ≺ l2,1, l2,2 ≺ l1,2, l2,3 ≺ l1,3, l3,2 ≺ l1,4, l2,1 ∼ l3,1, l2,2 ∼ l3,2,

• I = {{l1,0, l1,1, l1,2, l1,3, l1,4}, {l2,0, l2,1, l2,2, l2,3}, {l3,0, l3,1, l3,2}},

• Msg = {(l1,1, A, l2,1), (l2,2, B, l1,2), (l2,2, C, l3,2), (l2,3, D, l1,3), (l3,3, E, l1,4)}

• Cond = {({l2,1, l3,1}, c4), ({l2,2}, c2 ∧ c3)},

• LocInv = {(l1,1, ◦, c1, l1,2, •)}

Well-Formedness

–
8

–
2

0
17

-0
6

-0
1

–
S

ls
cs

y
n

–

33/46

Bondedness/no floating conditions: (could be relaxed a little if we wanted to)

• For each location l ∈ L, if l is the location of

• a condition, i.e. ∃ (L,φ) ∈ Cond : l ∈ L, or

• a local invariant, i.e. ∃ (l1, ι1, φ, l2, ι2) ∈ LocInv : l ∈ {l1, l2},

then there is a location l′ simultaneous to l, i.e. l ∼ l′, which is the location of

• an instance head, i.e. l′ is minimal wrt. �, or

• a message, i.e.

∃ (l1, E, l2) ∈ Msg : l ∈ {l1, l2}.

Note: if messages in a chart are cyclic,
then there doesn’t exist a partial order
(so such diagrams don’t even have an abstract syntax).

Concrete vs. Abstract Syntax

–
8

–
2

0
17

-0
6

-0
1

–
S

ls
cs

y
n

–

34/46

I1 I2

c1

I3

A

B
C

D

E

c2 ∧ c3

c4

I1 I2

c1

I3

A

B
C

D

E

c2 ∧ c3

c4

I1 I2

c1

I3

A

B
C

D

E

c2 ∧ c3

c4

I3 I2

c1

I1

A

B
C

D

E

c2 ∧ c3

c4

• L = {l1,0, l1,1, l1,2, l1,3, l1,2, l1,4, l2,0, l2,1, l2,2, l2,3, l3,0, l3,1, l3,2, l3,3}

• l1,0 ≺ l1,1 ≺ l1,2 ≺ l1,3, l1,2 ≺ l1,4, l2,0 ≺ l2,1 ≺ l2,2 ≺ l2,3, l3,0 ≺ l3,1 ≺ l3,2 ≺ l3,3,
l1,1 ≺ l2,1, l2,2 ≺ l1,2, l2,3 ≺ l1,3, l3,2 ≺ l1,4, l2,1 ∼ l3,1, l2,2 ∼ l3,2,

• I = {{l1,0, l1,1, l1,2, l1,3, l1,4}, {l2,0, l2,1, l2,2, l2,3}, {l3,0, l3,1, l3,2}},

• Msg = {(l1,1, A, l2,1), (l2,2, B, l1,2), (l2,2, C, l3,2), (l2,3, D, l1,3), (l3,3, E, l1,4)}

• Cond = {({l2,1, l3,1}, c4), ({l2,2}, c2 ∧ c3)},

• LocInv = {(l1,1, ◦, c1, l1,2, •)}

Content

–
8

–
2

0
17

-0
6

-0
1

–
S

co
n

te
n

t
–

35/46

• User Stories

• Use Cases

• Use Case Diagrams

• Sequence Diagrams

• A Brief History

• Live Sequence Charts

• Syntax:

• Elements, Locations,

• Towards Semantics:

• Cuts

• Firedsets

LSC Semantics: Towards Automaton Construction

–
8

–
2

0
17

-0
6

-0
1

–
m

ai
n

–

36/46

LSC Semantics: It’s in the Cuts!

–
8

–
2

0
17

-0
6

-0
1

–
S

cu
tf

ir
e

–

38/46

Definition. Let ((L,�,∼), I,Msg,Cond, LocInv,Θ) be an LSC body.

A non-empty set ∅ 6= C ⊆ L is called a cut of the LSC body iff C

• is downward closed, i.e.

∀ l, l′ ∈ L • l′ ∈ C ∧ l � l′ =⇒ l ∈ C,

• is closed under simultaneity, i.e.

∀ l, l′ ∈ L • l′ ∈ C ∧ l ∼ l′ =⇒ l ∈ C , and

• comprises at least one location per instance line, i.e.

∀ I ∈ I • C ∩ I 6= ∅.

The temperature function is extended to cuts as follows:

Θ(C) =

{

hot , if ∃ l ∈ C • (∄ l′ ∈ C • l ≺ l′) ∧Θ(l) = hot

cold , otherwise

that is, C is hot if and only if at least one of its maximal elements is hot.

Cut Examples

–
8

–
2

0
17

-0
6

-0
1

–
S

cu
tf

ir
e

–

39/46

∅ 6= C ⊆ L — downward closed — simultaneity closed — at least one loc. per instance line

I1 I2

φ

I3

E

F

G

l1,0

l1,1

l1,2

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

A Successor Relation on Cuts

–
8

–
2

0
17

-0
6

-0
1

–
S

cu
tf

ir
e

–

40/46

The partial order “�” and the simultaneity relation “∼” of locations
induce a direct successor relation on cuts of an LSC body as follows:

Definition.
Let C ⊆ L bet a cut of LSC body ((L,�,∼), I,Msg,Cond, LocInv,Θ).

A set ∅ 6= F ⊆ L of locations is called fired-set F of cut C if and only if

• C ∩ F = ∅ and C ∪ F is a cut, i.e. F is closed under simultaneity,

• all locations in F are direct ≺-successors of the front of C , i.e.

∀ l ∈ F ∃ l′ ∈ C • l′ ≺ l ∧ (∄ l′′ ∈ C • l′ ≺ l′′ ≺ l),

• locations in F , that lie on the same instance line, are pairwise unordered, i.e.

∀ l 6= l′ ∈ F • (∃ I ∈ I • {l, l′} ⊆ I) =⇒ l 6� l′ ∧ l′ 6� l,

• for each asynchronous message reception in F ,
the corresponding sending is already in C ,

∀ (l, E, l′) ∈ Msg • l′ ∈ F =⇒ l ∈ C.

The cut C′ = C ∪ F is called direct successor of C via F , denoted by C F C′ .

TBA Construction Principle

–
8

–
2

0
17

-0
6

-0
1

–
S

cu
tf

ir
e

–

43/46

Recall: The TBA B(L) of LSC L is (C, Q, qini ,→, QF) with

• Q is the set of cuts of L , qini is the instance heads cut,

• CB = C ∪̇ E!? ,

• → consists of loops, progress transitions (from F), and legal exits (cold cond./local inv.),

• F = {C ∈ Q | Θ(C) = cold ∨ C = L} is the set of cold cuts.

So in the following, we “only” need to construct the transitions’ labels:

→= {(q, ψloop(q), q) | q ∈ Q} ∪ {(q, ψprog (q, q
′), q′) | q F q

′} ∪ {(q, ψexit (q),L) | q ∈ Q}

q

. . .

ψloop(q): “what

allows us to stay at

cut q”

“. . .F1”
ψprog (q, q

′):
“characterisation of

firedset Fn”

ψexit(q):
“what allows us to

legally exit”

true

I1 I2

c1

I3

A

B
C

D

E

c2 ∧ c3

Tell Them What You’ve Told Them. . .

–
8

–
2

0
17

-0
6

-0
1

–
S

tt
w

y
tt

–

44/46

• User Stories: simple example of scenarios

• strong point: naming tests is necessary,

• weak point: hard to keep overview; global restrictions.

• Use-Cases:

• interactions between system and actors,

• be sure to elaborate exceptions and corner cases,

• in particular effective with customers lacking technical background.

• Use-Case Diagrams:

• visualise which participants are relevant for which use-case,

• are rather useless without the underlying use-case.

• Sequence Diagrams:

• a visual formalism for interactions, i.e.,

• precisely defined syntax,

• precisely defined semantics (→ next lecture).

• Can be used to precisely describe the interactions of a use-case.

References

–
8

–
2

0
17

-0
6

-0
1

–
m

ai
n

–

45/46

References

–
8

–
2

0
17

-0
6

-0
1

–
m

ai
n

–

46/46

Balzert, H. (2009). Lehrbuch der Softwaretechnik: Basiskonzepte und Requirements Engineering. Spektrum, 3rd
edition.

Beck, K. (1999). Extreme Programming Explained – Embrace Change. Addison-Wesley.

Damm, W. and Harel, D. (2001). LSCs: Breathing life into Message Sequence Charts. Formal Methods in System
Design, 19(1):45–80.

Harel, D. and Maoz, S. (2007). Assert and negate revisited: Modal semantics for UML sequence diagrams.
Software and System Modeling (SoSyM). To appear. (Early version in SCESM’06, 2006, pp. 13-20).

Harel, D. and Marelly, R. (2003). Come, Let’s Play: Scenario-Based Programming Using LSCs and the Play-Engine.
Springer-Verlag.

ITU-T (2011). ITU-T Recommendation Z.120: Message Sequence Chart (MSC), 5 edition.

Jacobson, I. (1992). Object Oriented Software Engineering – A Use Case Driven Approach. ACM Press.

Klose, J. (2003). LSCs: A Graphical Formalism for the Specification of Communication Behavior. PhD thesis, Carl von
Ossietzky Universität Oldenburg.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

OMG (2007). Unified modeling language: Superstructure, version 2.1.2. Technical Report formal/07-11-02.

Störrle, H. (2003). Assert, negate and refinement in UML-2 interactions. Technical Report TUM-I0323,
Technische Universität München.

