-3 -2017-05-08 - main -

Softwaretechnik / Software-Engineering

Lecture 3: More Metrics & Cost Estimation

2017-05-08

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Topic Area Project Management: Content

-3-2017-05-08 - Sblockcontent -

VL2 e Software Metrics
e Properties of Metrics
e Scales

‘e Examples

VL3 o Cost Estimation

e “(Software) Economics in a Nutshell”
e Expert’s Estimation

e Algorithmic Estimation

VL 4
o Project Management
e Project
e Process and Process Modelling
e Procedure Models
VL5

L{e Process Models

o Process Metrics
o CMMI, Spice

2/43

-3-2017-05-08 - Scontent -

Content

o Software Metrics

o Subjective Metrics

o Goal-Question-Metric Approach

o Cost Estimation

o “(Software) Economics in a Nutshell”

o Cost Estimation

o Expert’s Estimation
(® The Delphi Method

o Algorithmic Estimation

(e COCOMO

(® Function Points

Kinds of Metrics: by Measurement Procedure
objective metric pseudo metric subjective metric
Procedure measurement, counting, | computation (based on review by inspector,
possibly standardised measurements or verbal or by given scale
assessment)
Advantages exact, reproducible, yields relevant, directly not subvertable,
can be obtained usable statement on not plausible results,
automatically directly visible applicable to complex
characteristics characteristics
Disadvantages not always relevant, hard to comprehend, assessment costly,
often subvertable, pseudo-objective quality of results depends
no interpretation on inspector
Example, body height, air pressure | body mass index (BMI), health condition,
general weather forecast for the weather condition (“bad
next day weather”)
Example in size in LOC or NCS; productivity; usability;
Software number of (known) bugs cost estimation severeness of an error
Engineering by COCOMO
Usually used for | collection of simple predictions (cost quality assessment;
. base measures estimation); error weighting
z overall assessments
% (Ludewig and Lichter, 2013)
- 3242

3/43

/43

Recall: Can Pseudo-Metrics be Useful?

e Pseudo-metrics can be useful if there is a (good) correlation (with few false positives and few
false negatives) between valuation yields and the property to be measured:

valuation yield

low high

(/1,9[, el
A Gl /"74

true negative

Mloke o

e This may strongly depend on context information:

o If LOC was (or could be made) non-subvertible (— tutorials),
a useful measure for, e.g., project progress.

then LOC/day

5/43

Kinds of Metrics: by Measurement Procedure

@
s
e
3]

subjective metric

Procedure measurement, counting, | computation (based on review by inspector,
possibly standardised measurements or verbal or by given scale
assessment)
Advantages exact, reproducible, yields relevant, directly not subvertable,

can be obtained
automatically

usable statement on not
directly visible
characteristics

plausible results,
applicable to complex
characteristics

Disadvantages

not always relevant,
often subvertable,
no interpretation

hard to comprehend,
pseudo-objective

assessment costly,
quality of results depends
on inspector

Example, body height, air pressure | body mass index (BMI), health condition,

general weather forecast for the weather condition (“bad
next day weather”)

Example in size in LOC or NCSI; productivity; usability;

Software number of (known) bugs | cost estimation severeness of an error

Engineering by COCOMO

Usually used for

collection of simple
base measures

predictions (cost
estimation);
overall assessments

quality assessment;
error weighting

(Ludewig and Lichter, 2013)

6/43

Subjective Metrics

-3-2017-05-08 - Ssubjective -

-3-2017-05-08 - main -

example

problems

countermeasures

Statement “The specification | Terms may be Allow only certain

is available” ambiguous, statements, characterise
conclusions are | them precisely.
hardly possible.

Assessment “The module is Not necessarily | Only offer particular
implementedina | comparable. outcomes; put them on an
clever way! (at least ordinal) scale.

Grading “Readability is Subjective; Define criteria for grades;
graded 4.0 grading not give examples how to grade;

reproducible.

practice on existing artefacts

(Ludewig and Lichter, 2013)

7/43

The Goal-Question-Metric Approach

8/43

Information Overload!?

-3-2017-05-08 - Sgqm -

Now we have mentioned nearly 60 attributes one could measure...

Which ones should we measure?

It depends...

One approach: Goal-Question-Metric (GQM).

Goal-Question-Metric (Basili and Weiss, 19584)

-3-2017-05-08 - Sggm -

The three steps of GQM:

(i) Define the goals relevant for a project or an organisation.

(i) From each goal, derive questions

which need to be answered to check whether the goal is reached.
(iii) For each question, choose (or develop) metrics

which contribute to finding answers.

A

>

Being good wrt. to a certain metric is (in general) not an asset on its own.
We usually want to optimise wrt. goals, not wrt. metrics.
In particular critical: pseudo-metrics for quality.

Software and process measurements may yield
personal data (“personenbezogene Daten’).
Their collection may be regulated by laws.

10/43

11743

Example: A Metric for Maintainability

3-2017-05-08 - Sggm

e Goal: assess maintainability.

e One approach: grade the following aspects, e.g., with scale S = {0, ..., 10}.

(Some aspects may be objective, some subjective (conduct review))

e Norm Conformance o Locality

n1: size of units (modules etc.) l1: use of parameters t1:

ny: labelling l2: information hiding to:
I3: local flow of control t3:

n3: naming of identifiers

o Testability

test driver
test data
preparation for test evaluation

. desion (i l4: design of interfaces t4: diagnostic components
na: design (layout) . t5: dynamic consistency checks
ns: separation of literals o Readability
ng: style of comments r1: data types o Typing

ro: structure of control flow y1: type differentiation

7r3: comments

e Define:m = %0“’2 (

e Procedure:

o Train reviewers on existing examples.

o Do not over-interpret results of first applications.
NN —

o Evaluate and adjust before putting to use, adjust regularly.
ooy

Example: A Metric for Maintainability

-3 -2017-05-08 - Sgqm -

Y2

type restriction

. _ g1mit-+920-y2 — N2
tmg = DITRe002 G= Y gi).

(Ludewig and Lichter, 2013)
12/43

o Goal: assess maintainability.
o One approach: grade the following

(Some aspects may be objective, some ¢

e Norm Conformance e Loca
n1: size of units (modules etc.) 11 us
ng: labelling lot inf
ng: naming of identifiers ;j l;ec

ny: design (layout)

ns: separation of literals o Reac

Development of a pseudo-metrics:

(i

ii
(iii

(iv,

)
)
)
)

(v) Develop base measures for all parameters of

the definition.

(vi) Apply and improve the metric.

Identify aspect to be represented.
Devise a model of the aspect.
Fix a scale for the metric.

Develop a definition of the pseudo-metric,
i.e., how to compute the metric.

ne: style of comments r1: datatypes

ro: structure of control flow
r3: comments

o Define:m = 21t -tz

e Procedure;

o Train reviewers on existing examples.

o Do not over-interpret results of first applications.

o Evaluate and adjust before putting to use, adjust regularly.

L] |yPIllg

y1: type differentiation
yo: type restriction

. _ g1nite+g20-y2 — \20
iy = LRI (=% T gi).

(Ludewig and Lichter, 2013)
12/43

And Which Metrics Should One Use?

Often useful: collect some basic measures in advance
(in particular if collection is cheap / automatic), e.g::
o size...
. of newly created and changed code, etc.
(automatically provided by revision control software),
o effort...

... for coding, review, testing, verification, fixing, maintenance, etc.

e errors...

. at least errors found during quality assurance, and errors reported by customer
(can be recorded via standardised revision control messages)

-3-2017-05-08 - Sgqm -

13/43

And Which Metrics Should One Use?

Often useful: collect some basic measures in advance
(in particular if collection is cheap / automatic), e.g::

® size...

. of newly created and changed code, etc.
(automatically provided by revision control software),

o effort...

/teaching/swt/swtvl:Lines of Code and Churn Level

... for coding, review, testing, verificatio

2,000,000
1,500,000 1,200,000

1,800,000
1,100,000

e errors... 1,700,000
o

. at least errors found during quality as{ L0000

1 H H 5 ' 800,000

(can be recorded via standardised revi| i

£ 1,000,000
3 900,000 600,000
800,000 sn,000
700,000
600,000
500,000 300,000

400,000
300,000 I 200,000

400,000

200,000 Jono00
100,000
0

0

e

11-Apr
18-Apr
25-Apr-

2-May]

[Lines of Code B Lines touched

28-Feb

Date

LOC and changed lines over time (obtained by statsvn(1).

13/43

-3-2017-05-08 - Sggm -

And Which Metrics Should One Use?

-3-2017-05-08 - Sgqm -

Often useful: collect some basic measures in advance
(in particular if collection is cheap / automatic), e.g.:

e size...

. of newly created and changed code, etc.
(automatically provided by revision control software),

o effort...

... for coding, review, testing, verification, fixing, maintenance, etc.

e errors...

. at least errors found during quality assurance, and errors reported by customer
(can be recorded via standardised revision control messages)

Measures derived from such basic measures may indicate problems ahead early enough
and buy time to take appropriate counter-measures. E.g., track

o error rate per release, error density (errors per LOC),
o average effort for error detection and correction,
e etc.
over time. In case of unusual values: investigate further (maybe using additional metrics).
13/43

And Which Metrics ShouldQne Llca?

 sonaraube &

Often useful: collect some basic meas .
(in particular if collection is cheap / au{ ~ *"*™

® size...

. of newly created and changed code, ¢
(automatically provided by revision cq

MysaL

ALL PROVECTS

o effort...

Decomber ,2008

FORGES

... for coding, review, testing, verificatio

e errors...

. at least errors found during quality as{
(can be recorded via standardised revi

i - Wob APt

Measures. derived from such .baSiC me. Tool support for software metrics, e.g., SonarCube.
and buy time to take appropriate coun

o error rate per release, error density (errors per LOC),
o average effort for error detection and correction,
e etc.

over time. In case of unusual values: investigate further (maybe using additional metrics).

-3-2017-05-08 - Sggm -

13/43

Content

o Software Metrics

}:(o Subjective Metrics
(e Goal-Question-Metric Approach

e Cost Estimation
(e “(Software) Economics in a Nutshell”
(e Cost Estimation
(e Expert’s Estimation
(® The Delphi Method

(e Algorithmic Estimation

(e COCOMO
(® Function Points

-3-2017-05-08 - Scontent -

14/43

Topic Area Project Management: Content

VL2 e Software Metrics
e Properties of Metrics
e Scales

‘e Examples

VL3 o Cost Estimation

e “(Software) Economics in a Nutshell”
e Expert’s Estimation
e Algorithmic Estimation

VL 4
o Project Management

e Project

o Process and Process Modelling
o Procedure Models

VL5

o Process Models

o Process Metrics
(o CMM], Spice

s
e
3]

15/43

-3-2017-05-08 - Scontent -

-3-2017-05-08 - main -

Content

o Software Metrics

}:(o Subjective Metrics
(e Goal-Question-Metric Approach

e Cost Estimation

(o “(Software) Economics in a Nutshell”

(e Cost Estimation

(e Expert’s Estimation
(® The Delphi Method

(e Algorithmic Estimation

(e COCOMO
(® Function Points

“(Software) Economics in a Nutshell”

16/43

17/43

Costs

“Next to ‘Software, ‘Costs’ is one of the terms occurring most often in this book.”

A first approximation:

Ludewig and Lichter (2013)

cost (‘Kosten)

all disadvantages of a solution

benefit (‘Nutzen)
(or: negative costs)

all benefits of a solution.

Note: costs / benefits can be subjective — and not necessarily quantifiable in terms of money...

Super-ordinate goal of many projects:

o Minimize overall costs, i.e. maximise difference between and

(Equivalent: minimize sum of positive and negative costs.)

18/43

Costs vs. Benefits: A Closer Look

The benefit of a software is determined by the advantages achievable using the software;

it is influenced by:

o the degree of coincidence between product and requirements,

o additional services, comfort, flexibility etc.

Some other examples of cost/benefit pairs: (inspired by Jones (1990))

Labor during development
(e.g., develop new test
machinery)

Use of result
(e.g., faster testing)

New equipment
(purchase, maintenance,
depreciation)

Better equipment
(maintenance;
maybe revenue from selling old)

New software purchases

(Other) use of new software

Conversion from old
system to new

Improvement of system,
maybe easier maintenance

Increased data gathering

Increased control

Training for employees

Increased productivity

19/43

Costs: Economics in a Nutshell

Distinguish current cost (laufende Kosten), e.g.

e wages, .
o (business) management, marketing, aclue wSSehs,
e rooms,

e computers, networks, software as part of infrastructure, ?

° ...
pPered

and project-related cost (projektbezogene Kosten), e.g. | &G,
o heg

o additional temporary personnel,

e contract costs,

e expenses,

o hardware and software as part of product or system,

L)

7 20743
Software Costs in a Narrower Sense
software costs
net productlon quallty costs (wr::f]::f:igify
error prevention analyse-and-fix error costs decrensed benefit
costs costs
quality assurance
error localisation error removal error caused costs
costs costs (in operation)
@uring and)after development Ludewig and Lichter (2013)

-3-2017-05-08 - Seco -

Software Engineering
principles teGb a
ciently on real machines. F. L. Bauer (1971)

arethat is reliable and works effi-

— the establishment and use of sound engineering m

21/43

Discovering Fundamental Errors Late Can Be Expensive

-3-2017-05-08 - Seco -

relative cost of an error
200 T
100 +
1
50 | larger projects \
.
20 I
10 + smaller projects
' \
I '
| |
2 1 ! | phase of error
i ! detection
Il Il Il Il
T T
Analysis Design Coding Test & Acceptance
Ve Integration & Operation
—= =

Relative error costs over latency according to investigations at IBM, etc.

By (Boehm, 1979); Visualisation: Ludewig and Lichter (2013).

-3-2017-05-08 - main -

Cost Estimation

22/43

23/43

3-2017-05-08 - Scontent

Content

e Software Metrics
I Subjective Metrics
(e Goal-Question-Metric Approach

e Cost Estimation

<o “(Software) Economics in a Nutshell”

‘e Cost Estimation
(e Expert’s Estimation
(® The Delphi Method

(e Algorithmic Estimation

(e COCOMO
(® Function Points

Why Estimate Cost?

O
®

Customer Developer Customner Developer Customer Developer Developer Customer
announcement offer software contract f
(Lastenheft (Pflichtenheft) fincl. Pflichtenhef) software delivery

Lastenheft (Requirements Specification) Vom Auftraggeber festgelegte Gesamtheit
der Forderungen an die Lieferungen und Leistungen eines Auftragnehmers innerhalb

eines Auftrages.
(Entire demands on deliverables and services of a developer within a contracted development, cre-
ated by the customer.) DIN 69901-5 (2009)

o Developer can help with writing the requirements specification,
in particular if customer is lacking technical background.

Pflichtenheft (Feature Specification) Vom Auftragnehmer erarbeitete Reali-
sierungsvorgaben aufgrund der Umsetzung des vom Auftraggeber vorgegebenen

Lastenhefts.
(Specification of how to realise a given requirements specification, created by the developer.)

DIN 69901-5 (2009)

o One way of getting the feature specification: a pre-project (may be subject of a designated contract).
. : one and the same content can serve both purposes; then only the title defines the purpose.

- 3-2017-05-08 - Swhyestimate -

24/43

25/43

The “Estimation Funnel”

-3-2017-05-08 - Swhyestimate -

-3-2017-05-08 - main -

4x1

% %;o.s Cawoselots?)
e -

effort estimated to real 10k .)
effort (log. scale) o 4o (acsclatet)

0.5t

0.25x1

Pre-Project /) Analysis A Design A Coding & Test A

Uncertainty with estimations (following (Boehm et al, 2000), p. 10).
Visualisation: Ludewig and Lichter (2013)

26/43

Expert’s Estimation

27/43

Expert’s Estimation

-3-2017-05-08 - Sexperts -

-3-2017-05-08 - main -

One approach: the Delphi method.

° Step 1: write down your
estimates! :
° Step 2: show your estimates
;
e Step 3:

T e

o Then take the median, for example.

Algorithmic Estimation

28/43

29/43

Algorithmic Estimation: Principle

- 3-2017-05-08 - Salgorithmic -

P1 PQ P3 P4 P5 P6 t

Assume:
o Projects Pi,. .., Ps took place in the past,
o Sizes S;, costs C;, and kinds k; (0 = blue-ish, 1 = -ish) have been measured and recorded.

Question: What is the cost of the new project Ps?
Approach:
(i) Try to find a function f such that f(S;, k;) = C;,for1 <4 < 5.

(i) Estimate size Sg and kind k.
(iii) Estimate cost Cg as Cg = f(5'6, 126).
696 — J\P6, 76/

(In the artificial example above, f(S,k) = S - 1.8 + k - 0.3 would work, i.e.
if Pg is of kind (thus kg = 1) and size estimate is Sg = 2.7 then estimate Cg as f(S‘g, 156) =5.16.)

30/43

Algorithmic Estimation: Principle

- 3-2017-05-08 - Salgorithmic -

size W/

P P Ps P P Pt

Approach, more general:

(i) Identify (measurable) factors F1, . .., F;, which influence overall cost, like size in LOC.
(i) Take a big sample of data from previous projects.

(iii) Try to come up with a formula f such that f(F1, ..., F,,) matches previous costs.

(iv) Estimate values for F1, ..., Fy, foranew project. 4
(v) Take f(F1,..., F,) as cost estimate C for the new project.

(vi) Conduct new project, measure F1, ..., Fy, and cost C.

(vii) Adjust f if C'is too different from C.

Note:

o The need for (expert’s) estimation does not go away: one needs to estimate £, . . ., F,.

o Rationale: it is often easier to estimate technical aspects than to estimate cost directly.
30/43

-3-2017-05-08 - main -

Algorithmic Estimation: COCOMO

31743

Algorithmic Estimation: COCOMO

-3-2017-05-08 - Scocomo -

o Constructive Cost Model:

Formulae which fit a huge set of archived project data (from the late 70’%s).
Flavours:

o COCOMO 81 (Boehm, 1981): variants basic, intermediate, detailed
o COCOMO Il (Boehm et al,, 2000)

All flavours are based on estimated program size S measured in
DSl (Delivered Source Instructions) or kDSI (1000 DSI).

Factors like security requirements or experience of the project team
are mapped to values for parameters of the formulae.

COCOMO examples:

o textbooks like Ludewig and Lichter (2013) (most probably made up)

o an exceptionally large example:
COCOMO 81 for the Linux kernel (Wheeler, 2006) (and follow-ups)

32/43

COCOMO 81

Characteristics of the Type a b Software
R . Deadlines/ Dev. Project Type
Size Innovation ; .
Constraints | Environment
Sl Little Not tight Stable 3.2 | 1.05 | Organic
(<50 KLOC) g < 8
Medium . .) .
(<300 KLOC) Medium Medium Medium 3.0 | 112 | Semi-detached
Large Greater Tight G A 2.8 | 1.20 | Embedded
Interfaces
Basic COCOMO:

o effortrequired: E =a-(S/kDSI)" [PM (person-months)]
o timetodevelop: T'=c¢-E? [months]

e headcount: H = E/T [FTE (full time employee)]
o productivity: P =S/E [DSIperPM] (¢ use to check for)
Intermediate COCOMO:

p— b -
E =M -a-(S5/kDSI) [person-months]

M = RELY - CPLX - TIME - ACAP - PCAP - LEXP - TOOL - SCED

3343

COCOMO 81: Some Cost Drivers

M = RELY - CPLX - TIME - ACAP - PCAP - LEXP - TOOL - SCED

RELY required software reliability 0.75 0.88 1 115 140
CPLX product complexity 0.70 0.85 1 115 130 1.65
TIME execution time constraint 1 1 130 1.66
ACAP analyst capability 1.46 119 1 0.86 071
PCAP programmer capability 142 117 1 0.86 07
LEXP progrgmming language 114 107 1 0.95
experience
TOOL use of software tools 124 110 1 0.91 0.83
SCED required development 123 1.08 1 1.04 110
schedule

o Note: what, e.g,, “extra high” TIME means, may depend on project context.
(Consider data from previous projects.)

34/43

cocomo 1 (Boehm et al., 2000)

ocomo -

-3-2017-05-08 - Sc

Consists of

o Application Composition Model - project work is configuring components, rather than
programming

e Early Design Model - adaption of Function Point approach (in a minute);
does not need completed architecture design
o Post-Architecture Model — improvement of COCOMO 81; needs completed archi-

tecture design, and size of components estimatable

35/43

COCOMO II: Post-Architecture

omo -

-3 -2017-05-08 - Scoc

E=294.-8%. M

e Programsize: S = (1 4+ REVL) - (Snew + Sequiv)

e requirements volatility REVL:
e.g. if new requirements make 10% of code unusable, then REVL = 0.1

o Spew: estimated size minus size w of re-used code,
o Sequiv = w/q, if writing new code takes g-times the effort of re-use.

e Scaling factors:
X=6+w, w=0091, §==.-(PREC + FLEX + RESL+ TEAM + PMAT)

100
(] . vel extra
factor ‘{o";,y low normal high higrz high
PREC precedentness (experience with 6.20 496 | 372 248 | 124 0.00
similar projects)
FLEX development flexibility 5.07 405 | 3.04 203 | 101 0.00
(development process fixed by
customer)
RESL Architecture/risk resolution (risk 7.07 5.65 424 2.83 1.41 0.00
management, architecture size)
TEAM Team cohesion (communication 548 438 329 219 110 0.00
effort in team)
PMAT Process maturity (see CMMI) 7.80 6.24 4.69 312 1.56 0.00

36/43

COCOMO II: Post-Architecture Cont’d

3-2017-05-08 - Sc

2017-05-08 - mai

M = RELY - DATA - --- - SCED

Product factors RELY required software reliability
size of database
CPLX complexity of system
degree of development of reusable components
amount of required documentation
Platform factors TIME execution time constraint
memory consumption constraint
stability of development environment
Team factors ACAP analyst capability
PCAP programmer capability
continuity of involved personnel
experience with application domain
experience with development environment
LTEX experience with programming language(s) and tools
Project factors TOOL use of software tools
degree of distributedness
SCED required development schedule

(also in COCOMO 81,

)

37/43

Algorithmic Estimation: Function Points

38/43

Algorithmic Estimation: Function Points

RSN
Complexity Sum
Type low medium high
input 3= | ~—4= ~— 6= —~
output 4= _ 5= T =
query _ 3= __ 4= 6=
user data _ T=1] __ _10=| __ 15=
referencedata | _ 5= | 7= ___10=
Unadjusted function points UFP A~ 14
Value adjustment factor VAF VAF = 0.65+W1()-Z GSC,,
Adjusted function points AFP = UFP - VAF =t

0< GSC; <5.

39/43

2
<

Algorithmic Estimation: Function Points

350
PM

300 /
250 VW/
/ 1BM
200
/

150
Col
100 F+———= “//'"/
Type low m i
50 +
input 3= | ! AFP
p! i / : .
output 4= | 0 500 1000 1500 2000
query _ 3= _]))
IBM and VW curve for the conversion from AFPs to PM according to
user data = | (Noth and Kretzschmar, 1984) and (Knéll and Busse, 1991).
reference data 5= 7= | 10 =
Unadjusted function points UFP |
Value adjustment factor VAF VAF = 0.65+ 100 ; GSC,
Adjusted function points AFP = UFP - VAF B

0< GSC; <5,

39/43

Discussion

-3-2017-05-08 - Sfunctionpts -

Ludewig and Lichter (2013) says:

e Function Point approach used in practice,
in particular for commercial software (business software?).

o COCOMO tends to overestimate in this domain;
needs to be adjusted by corresponding factors.

In the end, it's experience, experience, experience:

“Estimate, document, estimate better.’ (Ludewig and Lichter, 2013)

Suggestion: start to explicate your experience

o Take notes on your projects:

(e.g., Softwarepraktikum, Bachelor Projekt, Master Bacherlors Thesis, Master Projekt, Master’s Thesis, ...)
e

o timestamps, size of program created, number of errors found, number of pages written, ...
T—

o Try to identify factors: what hindered productivity, what boosted productivity, ...

e Which detours and mistakes were avoidable in hindsight? How?

Tell Them What You’ve Told Them. . .

ytt-

-3-2017-05-08 - Sttw,

Goal-Question-Metric approach:

o Define goals, derive questions, choose metrics.
o Evaluate and adjust.

Recall: It's about the goal, not the metrics.

For software costs, we can distinguish

o net production, quality costs, maintenance.

Software engineering is about being economic in all three aspects.
Why estimate?

o Requirements specification (‘Lastenheft)
o Feature specification (‘Pflichtenheft)

The latter (plus budget) is usually part of software contracts.

Approaches:

o Expert’s Estimation
o Algorithmic Estimation: COCOMO, Function Points

— estimate cost indirectly, by estimating more technical aspects.

In the end, it's (and (and).

40/43

41743

-3-2017-05-08 - main -

References

42/43

References

-3-2017-05-08 - main -

Basili, V. R. and Weiss, D. M. (1984). A methodology for collecting valid software engineering data. IEEE
Transactions of Software Engineering, 10(6):728-738.

Bauer, F. L. (1971). Software engineering. In IFIP Congress (1), pages 530-538.

Boehm, B. W. (1979). Guidelines for verifying and validating software requirements and design specifications. In
EURO IFIP 79, pages 711-719. Elsevier North-Holland.

Boehm, B. W. (1981). Software Engineering Economics. Prentice-Hall.

Boehm, B. W,, Horowitz, E., Madachy, R., Reifer, D., Clark, B. K., Steece, B., Brown, A. W., Chulani, S., and Abts, C.
(2000). Software Cost Estimation with COCOMO II. Prentice-Hall.

DIN (2009). Projektmanagement; Projektmanagementsysteme. DIN 69901-5.
Jones, G. W. (1990). Software Engineering. John Wiley & Sons.

Knoll, H.-D. and Busse, J. (1991). Aufwandsschdtzung von Software-Projekten in der Praxis: Methoden,
Werkzeugeinsatz, Fallbeispiele. Number 8 in Reihe Angewandte Informatik. Bl Wissenschaftsverlag.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Noth, T. and Kretzschmar, M. (1984). Aufwandsschdtzung von DV-Projekten, Darstellung und Praxisvergleich der
wichtigsten Verfahren. Springer-Verlag.

Wheeler, D. A. (2006). Linux kernel 2.6: It's worth more!

43/43

