Algorithm AbstRefineLoop

- compute set of abstract states $ReachStates^#$
 using an abstraction defined by set of predicates $Preds$
 (initially $Preds = \emptyset$)
- if set of error states disjoint from every abstract state: stop
- otherwise, take abstract state ψ in $ReachStates^#$ that
 overlaps with set of error states
 refinement is only possible if overlap is caused by imprecision
- construct $path$, sequence of program transitions leading to ψ
- analyze $path$ using $FeasiblePath$
- if $path$ feasible: stop
- otherwise ($path$ is not feasible), compute a set of predicates
 that refines the abstraction function and repeat
algorithm AbstRefineLoop

function AbstRefineLoop
begin
 Preds := ∅
 repeat
 (ReachStates#, Parent) := AbstReach(Preds)
 if exists ψ ∈ ReachStates# such that ψ ∧ φ_{err} ∉ false
 then
 path := MakePath(ψ, Parent)
 if FeasiblePath(path) then
 return “counterexample path: path”
 else
 Preds := RefinePath(path) ∪ Preds
 end
 else
 return “program is correct”
 end
 end
end.
counterexample path

- abstract post computation

\[\varphi_5 = post^\#(post^\#(post^\#(\alpha(\varphi_{init}), \rho_1), \rho_3), \rho_5) \]

- counterexample path in graph formed by \textit{Parent} relation
 \(\Rightarrow \) sequence of edge labels

\[\rho_1, \rho_3, \rho_5 \]
analysis of counterexample path

- apply concrete post instead of abstract post

\[
\text{post}(\text{post}(\text{post}(\varphi_{\text{init}}, \rho_1), \rho_3), \rho_5) \\
= \text{post}(\text{post}(\text{at}_2 \land y \geq z, \rho_3), \rho_5) \\
= \text{post}(\text{at}_3 \land y \geq z \land x \geq y, \rho_5) \\
= \text{false}.
\]

- executing the program transitions \(\rho_1, \rho_3,\) and \(\rho_5\) in sequence is not feasible
refinement of abstraction

- add more predicates to $Preds$ such that the new abstraction function α and the new abstract post $post^\#$ exclude the counterexample path, meaning:

$$post^\#(post^\#(post^\#(\alpha(\varphi_{init}), \rho_1), \rho_3), \rho_5) \land \varphi_{err} \models false.$$
over-approximation along counterexample path

- compute sets of states ψ_1, \ldots, ψ_4 such that

\[
\begin{align*}
\varphi_{init} &\models \psi_1 \\
post(\psi_1, \rho_1) &\models \psi_2 \\
post(\psi_2, \rho_3) &\models \psi_3 \\
post(\psi_3, \rho_5) &\models \psi_4 \\
\psi_4 \land \varphi_{err} &\models false
\end{align*}
\]

- add predicates to $Preds$ such that ψ_1, \ldots, ψ_4 can be expressed (as conjunctions of predicates in new set $Preds$),

- **progress**: the new abstraction is sufficiently precise to exclude the counterexample path ρ_1, ρ_3, ρ_5

\[
post#(post#(post#(\alpha(\varphi_{init}), \rho_1), \rho_3), \rho_5) \land \varphi_{err} \models false .
\]
progress

if predicates can express ψ_1, \ldots, ψ_4 such that

$$
\begin{align*}
\varphi_{init} & \models \psi_1 \\
post(\psi_1, \rho_1) & \models \psi_2 \\
post(\psi_2, \rho_3) & \models \psi_3 \\
post(\psi_3, \rho_5) & \models \psi_4 \\
\psi_4 \land \varphi_{err} & \models false
\end{align*}
$$

then

$$
\begin{align*}
\alpha(\varphi_{init}) & \models \psi_1 \\
post^\#(\psi_1, \rho_1) & \models \psi_2 \\
post^\#(\psi_2, \rho_3) & \models \psi_3 \\
post^\#(\psi_3, \rho_5) & \models \psi_4 \\
\psi_4 \land \varphi_{err} & \models false
\end{align*}
$$

and thus

$$
post^\#(post^\#(post^\#(\alpha(\varphi_{init}), \rho_1), \rho_3), \rho_5) \land \varphi_{err} \models false
$$
function MakePath
input
\(\psi \) - reachable abstract state
\(Parent \) - predecessor relation
begin
1 \hspace{1em} path := empty sequence
2 \hspace{1em} \psi' := \psi
3 \hspace{1em} \textbf{while} exist \(\varphi \) and \(\rho \) such that \((\varphi, \rho, \varphi') \in Parent \) \textbf{do}
4 \hspace{2em} path := \rho \cdot path
5 \hspace{2em} \psi' := \varphi
6 \hspace{2em} \textbf{return} path
end
path computation

- input: reachable abstract state $\psi + Parent$ relation
- view $Parent$ as a tree where ψ occurs as a node
- output: sequence of program transitions that labels the tree edges on path from root to ψ
- sequence is constructed iteratively by a backward traversal starting from the input node
- variable $path$ keeps track of the construction
- in example, call $\text{MAKEPath}(\varphi_5, Parent)$
- $path$, initially empty, is extended with transitions ρ_5, ρ_3, ρ_1
- corresponding edges: $(\varphi_3, \rho_5, \varphi_5), (\varphi_2, \rho_3, \varphi_3), (\varphi_1, \rho_1, \varphi_1)$
- output: $path = \rho_1\rho_3\rho_5$
feasibility of a path

function FeasiblePath
input
\(\rho_1 \ldots \rho_n \) - path
begin
1 \(\varphi := post(\varphi_{init}, \rho_1 \circ \ldots \circ \rho_n) \)
2 if \(\varphi \land \varphi_{err} \not\models false \) then
3 return true
4 else
5 return false
end
feasibility of a path

- input: sequence of program transitions $\rho_1 \ldots \rho_n$
- checks if there is a computation that produced by this sequence
- check uses the post-condition function and the relational composition of transition
- apply FeasiblePath on example path $\rho_1\rho_3\rho_5$
- relational composition of transitions yields
 $$\rho_1 \circ \rho_3 \circ \rho_5 = false.$$
- FeasiblePath sets φ to $false$ and then returns $false$
counterexample-guided discovery of predicates

\[
\text{function } \text{RefinePath} \\
\text{input} \\
\rho_1 \ldots \rho_n \text{ - path} \\
\text{begin} \\
1 \quad \varphi_0, \ldots, \varphi_n := \text{compute such that} \\
2 \quad (\varphi_{\text{init}} \models \varphi_0) \land \\
3 \quad (\text{post}(\varphi_0, \rho_1) \models \varphi_1) \land \ldots \land (\text{post}(\varphi_{n-1}, \rho_n) \models \varphi_n) \land \\
4 \quad (\varphi_n \land \varphi_{\text{err}} \models \text{false}) \\
5 \quad \text{return } \{\varphi_0, \ldots, \varphi_n\} \\
\text{end}
\]

- omitted: particular algorithm for finding $\varphi_0, \ldots, \varphi_n$
counterexample guided discovery of predicates

- input: sequence of program transitions $\rho_1 \ldots \rho_n$
- output: sets of states $\varphi_0, \ldots, \varphi_n$ such that
 - $\varphi_{init} \models \varphi_0$
 - $\text{post}(\varphi_{i-1}, \rho_i) \models \varphi_i$
 - $\varphi_n \land \varphi_{err} \models \text{false}$ for $i \in 1..n$
- if $\varphi_0, \ldots, \varphi_n$ are added to $P\text{reds}$ then the resulting α and $\text{post}^\#$ guarantee that
 \[
 \alpha(\varphi_{init}) \models \varphi_0 \\
 \text{post}^\#(\varphi_0, \rho_1) \models \varphi_1 \\
 \vdots \\
 \text{post}^\#(\varphi_{n-1}, \rho_n) \models \varphi_n \\
 \varphi_n \land \varphi_{err} \models \text{false}.
 \]
- in example, application of RefinePath on $\rho_1\rho_3\rho_5$ yields sequence of sets of states ψ_1, \ldots, ψ_4
next ...

- algorithm for counterexample-guided abstraction refinement
- put together all building blocks into an algorithm \texttt{AbstRefineLoop} that verifies safety using predicate abstraction and counterexample guided refinement
predicate abstraction and refinement loop

function AbstRefineLoop
begin
 Preds := \emptyset
 repeat
 (ReachStates#, Parent) := AbstReach(Preds)
 if exists \(\psi \in \text{ReachStates}^# \) such that \(\psi \land \varphi_{err} \nvdash false \) then
 path := MakePath(\(\psi \), Parent)
 if FeasiblePath(path) then
 return “counterexample path: path”
 else
 Preds := RefinePath(path) \cup Preds
 else
 return “program is correct”
 end.
end.
algorithm AbstRefineLoop

- input: program, output: proof or counterexample
- compute $\varphi_{reach}^\#$ using an abstraction defined wrt. set of predicates $Preds$ (initially empty)
- over-approximation $\varphi_{reach}^\#$: set of formulas $ReachStates^\#$ where each formula represents a set of states
- if set of error states disjoint from over-approximation: stop
- otherwise, consider a formula ψ in $ReachStates^\#$ that witnesses overlap with error states
- refinement is only possible if overlap is caused by imprecision
- construct path, sequence of program transitions leading to ψ
- analyze path using FeasiblePath
- if path feasible: stop
- otherwise (path is not feasible), compute a set of predicates that refines the abstraction function
\[\varphi_{\text{reach}}^{\#} \text{ stronger than every inductive property expressible in } \text{Preds} \]

- abstract domain \(D^{\#} \) with partial ordering \(\sqsubseteq \)
\(\varphi_{\text{reach}} \) stronger than every inductive property expressible in \(Preds \)

- abstract domain \(D# \) with partial ordering \(\sqsubseteq \)
- best abstraction: \(\alpha(\varphi) = \bigwedge\{\psi \in D# \mid \varphi \sqsubseteq \psi\} \)
\(\forall_{\text{reach}} \) stronger than every inductive property expressible in \(\text{Preds} \)

- abstract domain \(D^\# \) with partial ordering \(\sqsubseteq \)
- best abstraction: \(\alpha(\varphi) = \bigwedge \{ \psi \in D^\# \mid \varphi \sqsubseteq \psi \} \)
 \(\psi \in D^\# \) implies \(\alpha(\psi) = \psi \)
$\varphi^\#_{\text{reach}}$ stronger than every inductive property expressible in Preds

- abstract domain $D^\#$ with partial ordering \sqsubseteq
- best abstraction: $\alpha(\varphi) = \bigwedge\{\psi \in D^\# \mid \varphi \sqsubseteq \psi\}$
 $\psi \in D^\#$ implies $\alpha(\psi) = \psi$
- best abstract post: $\text{post}^\#(\psi) = \alpha(\text{post}(\psi))$
- $\varphi^\#_{\text{reach}} = \bigvee_{i \geq 0} (\text{post}^\#)^i(\alpha(\varphi_{\text{init}}))$
\(\varphi_{\text{reach}} \) stronger than every inductive property expressible in \(\text{Preds} \)

- abstract domain \(D^\# \) with partial ordering \(\sqsubseteq \)
- best abstraction: \(\alpha(\varphi) = \bigwedge \{ \psi \in D^\# \mid \varphi \sqsubseteq \psi \} \)
 \(\psi \in D^\# \) implies \(\alpha(\psi) = \psi \)
- best abstract post: \(\text{post}^\#(\psi) = \alpha(\text{post}(\psi)) \)
- \(\varphi_{\text{reach}} = \bigvee_{i \geq 0} (\text{post}^\#)^i(\alpha(\varphi_{\text{init}})) \)
- \(\phi \) is inductive \(\equiv \varphi_{\text{init}} \cup \text{post}(\phi) \sqsubseteq \phi \)
\(\varphi_{reach} \) stronger than every inductive property expressible in \(\text{Preds} \)

- abstract domain \(D^\# \) with partial ordering \(\sqsubseteq \)
- best abstraction: \(\alpha(\varphi) = \bigwedge \{ \psi \in D^\# \mid \varphi \sqsubseteq \psi \} \)
 \(\psi \in D^\# \) implies \(\alpha(\psi) = \psi \)
- best abstract post: \(\text{post}^\#(\psi) = \alpha(\text{post}(\psi)) \)
- \(\varphi_{reach} = \bigvee_{i \geq 0} (\text{post}^\#)^i(\alpha(\varphi_{init})) \)
- \(\phi \) is inductive \(\equiv \) \(\varphi_{init} \cup \text{post}(\phi) \sqsubseteq \phi \)
- if \(\phi \in D^\# \) inductive then \(\varphi_{reach}^\# \sqsubseteq \phi \)
φ_{reach} stronger than every inductive property expressible in $Preds$

- abstract domain $D^\#$ with partial ordering \sqsubseteq
- best abstraction: $\alpha(\varphi) = \bigwedge\{\psi \in D^\# \mid \varphi \sqsubseteq \psi\}$
 $\psi \in D^\#$ implies $\alpha(\psi) = \psi$
- best abstract post: $post^\#(\psi) = \alpha(post(\psi))$
- $\varphi_{reach} = \bigvee_{i \geq 0} (post^\#)^i(\alpha(\varphi_{init}))$
- ϕ is inductive $\equiv \varphi_{init} \cup post(\phi) \sqsubseteq \phi$
- if $\phi \in D^\#$ inductive then $\varphi_{reach}^\# \sqsubseteq \phi$
- proof by induction on index of disjunct in $\varphi_{reach}^\#$
\(\varphi_{\text{reach}} \) stronger than every inductive property expressible in \(\text{Preds} \)

- abstract domain \(D^\# \) with partial ordering \(\sqsubseteq \)
- best abstraction: \(\alpha(\varphi) = \bigwedge \{ \psi \in D^\# \mid \varphi \sqsubseteq \psi \} \)
 \(\psi \in D^\# \) implies \(\alpha(\psi) = \psi \)
- best abstract post: \(post^\#(\psi) = \alpha(post(\psi)) \)
- \(\varphi^\#_{\text{reach}} = \bigvee_{i \geq 0} (post^\#)^i(\alpha(\varphi_{\text{init}})) \)
- \(\phi \) is inductive \(\equiv \varphi_{\text{init}} \cup post(\phi) \sqsubseteq \phi \)
- if \(\phi \in D^\# \) inductive then \(\varphi^\#_{\text{reach}} \sqsubseteq \phi \)
- proof by induction on index of disjunct in \(\varphi^\#_{\text{reach}} \)
- \((i = 0) \)
 \(\varphi_{\text{init}} \sqsubseteq \phi \) implies \(\alpha(\varphi_{\text{init}}) \sqsubseteq \alpha(\phi) = \phi \)
\(\varphi_{\text{reach}} \) stronger than every inductive property expressible in \(\text{Preds} \)

- abstract domain \(D^\# \) with partial ordering \(\sqsubseteq \)
- best abstraction: \(\alpha(\varphi) = \bigwedge \{ \psi \in D^\# \mid \varphi \sqsubseteq \psi \} \)
 \(\psi \in D^\# \) implies \(\alpha(\psi) = \psi \)
- best abstract post: \(\text{post}^\#(\psi) = \alpha(\text{post}(\psi)) \)
- \(\varphi_{\text{reach}} = \bigvee_{i \geq 0} (\text{post}^\#)^i(\alpha(\varphi_{\text{init}})) \)
- \(\phi \) is inductive \(\equiv \varphi_{\text{init}} \cup \text{post}(\phi) \sqsubseteq \phi \)
- if \(\phi \in D^\# \) inductive then \(\varphi_{\text{reach}}^\# \sqsubseteq \phi \)
- proof by induction on index of disjunct in \(\varphi_{\text{reach}}^\# \)
 - \((i = 0) \)
 \(\varphi_{\text{init}} \sqsubseteq \phi \) implies \(\alpha(\varphi_{\text{init}}) \sqsubseteq \alpha(\phi) = \phi \)
 - \((i \rightarrow i + 1) \)
 \(\psi \sqsubseteq \phi \) implies \(\text{post}(\psi) \sqsubseteq \text{post}(\phi) \sqsubseteq \phi \)
\(\varphi_{\text{reach}} \) stronger than every inductive property expressible in \(\text{Preds} \)

- abstract domain \(D^\# \) with partial ordering \(\sqsubseteq \)
- best abstraction: \(\alpha(\varphi) = \bigwedge \{ \psi \in D^\# \mid \varphi \sqsubseteq \psi \} \)
 \(\psi \in D^\# \) implies \(\alpha(\psi) = \psi \)
- best abstract post: \(\text{post}^\#(\psi) = \alpha(\text{post}(\psi)) \)
- \(\varphi^\#_{\text{reach}} = \bigvee_{i \geq 0} (\text{post}^\#)^i(\alpha(\varphi_{\text{init}})) \)
- \(\phi \) is inductive \(\equiv \varphi_{\text{init}} \cup \text{post}(\phi) \sqsubseteq \phi \)
- if \(\phi \in D^\# \) inductive then \(\varphi^\#_{\text{reach}} \sqsubseteq \phi \)
- proof by induction on index of disjunct in \(\varphi^\#_{\text{reach}} \)
 - \((i = 0) \)
 \(\varphi_{\text{init}} \sqsubseteq \phi \) implies \(\alpha(\varphi_{\text{init}}) \sqsubseteq \alpha(\phi) = \phi \)
 - \((i \rightarrow i + 1) \)
 \(\psi \sqsubseteq \phi \) implies \(\text{post}(\psi) \sqsubseteq \text{post}(\phi) \sqsubseteq \phi \)
 which implies \(\text{post}^\#(\psi) \sqsubseteq \alpha(\phi) = \phi \)