abstraction of post by post™

» instead of iteratively applying post, use
over-approximation post™ such that always

post(p, p) |= post™ (i, p)

» decompose computation of post™ into two steps:
first, apply post and then, over-approximate result

» define abstraction function « such that always

p Ealp) .

» for a given abstraction function «, define post?:

post™ (¢, p) = a(post(p, p))



abstraction of ©,escn by sﬁf;ch

» instead of computing ¥, each,
compute over-approximation gpfzach such that ¢

#

reach

#

reach

» check whether ¢ contains any error states

if cpf;ch N Qerr = false
then Yreach N Yerr = false, i.e., program is safe

#

reach

» compute ¢ by applying iteration

(pfiach — Oé(gp"”"t) \
post™ (apinit), prR) V

= Preach

pOSt#(pOSt#(Oé(tp,'n,'t), ,OR), pR) V...

— \/I.Zo(post#)i(oz(@init)a PR)

#

> consequence: Yreach ‘: ¥ reach



predicate abstraction

» construct abstraction a(p) using a given set of building
blocks, so-called predicates

» predicate = formula over the program variables V
» fix finite set of predicates Preds = {p1,...,pn}

» over-approximation of ¢ by conjunction of predicates in Preds

a(p) = \{p € Preds | ¢ = p}

» computation of () requires n entailment checks
(n = number of predicates)



example: compute a(at_ b Ay > zAx+1<y)

» Preds = {at_{1,...,at_ U5,y > z,x > y}

1. to compute a(y), check logical consequence between ¢ and
each of the predicates:

y>z | x>y |at_ly | at_ly | at_l3 | at_l, | at_Uls
at_l> N\
y>zA = 7 7 = 7 7 7
x+1<y

2. result of abstraction = conjunction over entailed predicates

at_t> N

— >
yZZ/\X—l-léy) at_lr Ny > z

a



trivial abstraction a(yp) = true

» result of applying predicate abstraction is true if
none of the predicates is entailed by ¢
(“predicates are too specific”)

... always the case if Preds = ()



algorithm ABSTREACH

begin
a = Ap. \{p € Preds | p = p}

post? = A, p) - a(post(p, p))
ReachStates™ = {a(winit)}

Parent = ()
Worklist := ReachStates™
while Worklist # () do

@ := choose from Worklist
Worklist := Worklist \ {p}
for each p € R do

/

¢ = post’(p,p)
if ' & ReachStates™ then
ReachStates™ := {¢'} U ReachStates™

Parent := {(p, p,¥’)} U Parent
Worklist := {¢'} U Worklist
return (ReachStates™ | Parent)
end



Abstract Reachability Graph

(901 ; at_€1]
lpl Y1 = CV(Qpinit)
[‘702 at oAy Z;Z_J o P2 p2 = post™ (i1, p1)
lps T post™ (@2, p2) = @2
— #
(p3:at l3ny>zAx>y) 3 = post¥ (2, p3)
l/)4 pa = post™ (3, pa)

(g04:at_€4/\y22/\x2y]

» Preds = {false,at_/(1,...,at_ls,y > z,x > y}

> nodes ©1, ..., p4s € ReachStates”

> labeled edges € Parent

» dotted edge : entailment relation (here, post™ (o, p2) = ©2)



example: predicate abstraction to compute gof;ch

> Preds = {false,at_{1,...,at_ {5,y > z,x > y}

> over-approximation of the set of initial states ©jnjt:
p1 = oz(at_él) — at_/¥;
» apply post™ on 1 wrt. each program transition:

Y2 = Post#(gol,m) = a(at_€2 ANy > z) —at_ lo Ny >z

-~

POSt(Q[?l,pl)

post™ (o1, p2) = - - - = post™ (1, ps) = N\{false, ...} = false



apply post™ to ¢, = (at_la Ny > z)

» application of p1, ps, and ps on o results in false

(since p1, pa, and ps are applicable only if either at_¢; or
at_{3 hold)

» for p» we obtain
post#(goz,pz) =afat. o ANy >zAx<y)=at loNy >z

result is o which is already in ReachStates™: nothing to do

» for p3 we obtain

post™ (oo, p3) = alat_ls3 ANy >z Ax > y)
—at 3Ny >zAx>y

new node 3 in ReachStates#, new edge in Parent



apply post™ to @3 = (at_lz3 ANy >z Ax>y)

>

>

application of p1, p2, and p3 on 3 results in false
for ps we obtain:

post#(gp3,p4) =aat by Ny >zZAX>yAx> 2Z)
=at_ by Ny >zAXx>y

2804

new node 4 in ReachStates™, new edge in Parent
for ps (assertion violation) we obtain:

post™ (o3, ps) = alat_ ls ANy >zAx>yAx+1<z)

= false

any further application of program transitions does not

compute any additional reachable states
#

thus, 7 ., =1V ...V @4
since gpfiach N at_Us = false, the program is proven safe



abstraction a(y)

» monotonicity

p1 = 2 implies a(p1) = ap2)
» idempotency
a(a(p1)) = a(e1)

» extensiveness
1 = afpr)



Abstract reachability computation with
Preds = {false,at_{1,...,at_ls,y > z}

[gpl : at_ﬁlJ
W
[902 cat_lh Ny zij \/‘, P2
lp3 T
(903 cat_ U3 Ny > z]
N

(gp4 cat_ la Ny > Z} (@5 rat_ ls ANy > Z]

1 = a(Pinit)

p2 = post™ (i1, p1)
post™ (2, p2) = 2
p3 = post™ (v, p3)
a4 = post™ (3, pa)
w5 = post™ (3, ps)



» omitting just one predicate (in the example: x > y) may lead

to an over-approximation gpﬁach such that

gpfzach N perr = false

that is, ABSTREACH without the predicate x > y fails to
prove safety



counterexample path

» Parent relation records sequence leading to 5

> apply p1 to ¢1 and obtain ¢,
» apply p3 to ¢, and obtain 3
» apply ps to ¢3 and obtain s

» counterexample path:
sequence of program transitions p1, p3, and ps

» Using this path and the functions « and post? corresponding
to the current set of predicates we obtain

p5 = post™ (post™ (post™ (cinit), p1), p3), P5)

that is, o5 is equal to the over-approximation of the
post-condition computed along the counterexample path



analysis of counterexample path

» check if the counterexample path also leads to the error states
when no over-approximation is applied

> compute

post(post(post(@init; p1), £3): P5)
= post(post(at_la Ny > z,p3), ps)
= post(at_ {3 ANy > zAx >y, ps)

= false .

» by executing the program transitions p1, p3, and ps is not
possible to reach any error

» conclude that the over-approximation is too coarse
when dealing with the above path



need for refinement of abstraction

» need a more precise over-approximation that will prevent

” . .
@l ..., from including error states



need for refinement of abstraction

» need a more precise over-approximation that will prevent

” . .
@l ..., from including error states

» need a more precise over-approximation that will prevent o
from including states that lead to error states along the path

p1, p3, and ps



need for refinement of abstraction

» need a more precise over-approximation that will prevent

” . .
@l ..., from including error states

» need a more precise over-approximation that will prevent o
from including states that lead to error states along the path
p1, p3, and ps

» need a refined abstraction function o and a corresponding
post™ such that the execution of ABSTREACH along the
counterexample path does not compute a set of states that
contains some error states

post™ (post™ (post™ (a(Pinit), P1)s P3)s P5) A Qerr = false .



over-approximation along counterexample path

» goal:

post™ (post™ (post™ (a(init), p1), P3)s P5) A Perr = false .

» define sets of states 11, ..., %4 such that

Pinit = Y1

post(v1, p1) E 2
post(t2, p3) F 13
post(3, ps) = a
Y4 N\ perr = false

» thus, 1, ..., guarantee that no error state can be reached
may approximate / still allow additional states
» example choice for 11,...,14
V1| o | 3 Y

at_/V; ‘ at_lry Ny > z ‘ at_ V3 ANx >z ‘ false



refinement of predicate abstraction

» given sets of states 1, ..., 4 such that

Pinit = Y1
post(11, p1) = ¥
post(1)2, p3) = 13

post(13, ps) = 14
Y4 N\ perr = false

» add 1, ...,1Y4 to the set of predicates Preds
» formal property (discussed later) guarantees:

a(pinit) = Y1
post™ (1, p1) E 2
post™ (12, p3) = 3

post™ (13, ps) = 14
Y4 N\ perr = false

proves: no error state reachable along path p1, p3, and ps



next ...

» approach for analysing counterexample computed by
ABSTREACH

> algorithms MAKEPATH, FEASIBLEPATH, and REFINEPATH



path computation

function MAKEPATH
input
1) - reachable abstract state
Parent - predecessor relation
begin
path := empty sequence
=
while exist ¢ and p such that (¢, p, ') € Parent do
path := p . path
=
return path
end

SO O~ WO



path computation

> input: rechable abstract state 1) + Parent relation
» view Parent as a tree where 9 occurs as a node

» output: sequence of program transitions that labels the tree
edges on path from root to v

» sequence is constructed iteratively by a backward traversal
starting from the input node

» variable path keeps track of the construction
» in example, call MAKEPATH(ys, Parent)
» path, initially empty, is extended with transitions ps, p3, p1

> Corresponding edges: (9037 P5, 905)' (9027 P3, 903)' (Qpl, P1, 901)
> output: path = p1p3ps



feasibility of a path

o A WODN =

function FEASIBLEPATH
input
P1-..pPn - path
begin
p = post(Pinit, P10 -0 pn)
if © A perr = false then
return true
else
return false
end



feasibility of a path

> input: sequence of program transitions pi ... pj,

» checks if there is a computation that produced by this
sequence

» check uses the post-condition function and the relational
composition of transition

» apply FEASIBLEPATH on example path p1p3p5

» relational composition of transitions yields

p1 © p3 o ps = false .

» FEASIBLEPATH sets ¢ to false and then returns false



counterexample-guided discovery of predicates

function REFINEPATH

input
P1...pPn - path
begin
0o, .. -,pn = compute such that
(Spinit }: 800) N\

(post(po, p1) = 1) A ... A (post(¢n—1,pn) = ¢n) A
(©n A Yerr = false)

return {yg, ..., ¢n}
end

T A WO N =

» omitted: particular algorithm for finding ¢q, ..., p,



counterexample guided discovery of predicates

» input: sequence of program transitions pi ... pj,
» output: sets of states g, ..., @, such that

> Vinit = ©0
> pOSt(SOi—hpi) ‘: Li
> o N\ Qe = false for i € 1..n

> if ©o,...,p, are added to Preds
then the resulting o and post™ guarantee that

O‘(Spinit) }: ¥0
post™ (¢o, p1) = 1

post™ (¢n—1, pn) = ¢n
©n N Perr = false .

» in example, application of REFINEPATH on p;p3p5 yields
sequence of sets of states 1,...,%Y4



next ...

» algorithm for counterexample-guided abstraction refinement

» put together all building blocks into an algorithm
ABSTREFINELOOP that verifies safety using predicate
abstraction and counterexample guided refinement



predicate abstraction and refinement loop

function ABSTREFINELOOP
begin
Preds := ()
repeat
(ReachStates™ , Parent) := ABSTREACH(Preds)
if exists ¥ € ReachStates™ such that Y N Qe = false
then
path := MAKEPATH(v), Parent)
if FEASIBLEPATH(path) then
return “counterexample path: path "
else
0 Preds := REFINEPATH(path) U Preds
1 else
return “program is correct”

R = ©O© 00 NO 1T~ W N -

end.



algorithm ABSTREFINELOOP

> input: program, output: proof or counterexample

> compute gpﬁach using an abstraction defined wrt. set of

predicates Preds (initially empty)

> over-approximation gpﬁach . set of formulas ReachStates™

where each formula represents a set of states
> if set of error states disjoint from over-approximation: stop

» otherwise, consider a formula 1 in ReachStates™ that
witnesses overlap with error states

» refinement is only possible if overlap is caused by imprecision
» construct path, sequence of program transitions leading to 1
» analyze path using FEASIBLEPATH

» if path feasible: stop

» otherwise (path is not feasible), compute a set of predicates
that refines the abstraction function



that's it!



