Propositional Logic
The set of formulas of propositional logic is given by the abstract syntax:

\[
\text{Form} \ni A, B, C \ ::= \ P | \bot | (\neg A) | (A \land B) | (A \lor B) | (A \rightarrow B)
\]

where \(P \) ranges over a countable set \(\text{Prop} \), whose elements are called propositional symbols or propositional variables. (We also let \(Q, R \) range over \(\text{Prop} \).)

- Formulas of the form \(\bot \) or \(P \) are called atomic.
- \(\top \) abbreviates \((\neg \bot)\) and \((A \leftrightarrow B)\) abbreviates \(((A \rightarrow B) \land (B \rightarrow A)) \).

Conventions to omit parentheses are:

- outermost parentheses can be dropped;
- the order of precedence (from the highest to the lowest) of connectives is: \(\neg, \land, \lor \) and \(\rightarrow \);
- binary connectives are right-associative.

There are recursion and induction principles (e.g. structural ones) for \(\text{Form} \).

A is a subformula of \(B \) when \(A \) “occurs in” \(B \).
Semantics

Definition

- \(T \) (true) and \(F \) (false) form the set of truth values.
- A valuation is a function \(\rho : \text{Prop} \rightarrow \{F, T\} \) that assigns truth values to propositional symbols.
- Given a valuation \(\rho \), the interpretation function \([\cdot]_\rho : \text{Form} \rightarrow \{F, T\} \) is defined recursively as follows:

 \[
 \begin{align*}
 [\bot]_\rho &= F \\
 [P]_\rho &= T \text{ iff } \rho(P) = T \\
 [\neg A]_\rho &= T \text{ iff } [A]_\rho = F \\
 [A \land B]_\rho &= T \text{ iff } [A]_\rho = T \text{ and } [B]_\rho = T \\
 [A \lor B]_\rho &= T \text{ iff } [A]_\rho = T \text{ or } [B]_\rho = T \\
 [A \rightarrow B]_\rho &= T \text{ iff } [A]_\rho = F \text{ or } [B]_\rho = T
 \end{align*}
 \]
Semantics

Definition

A propositional model \mathcal{M} is a set of proposition symbols, i.e. $\mathcal{M} \subseteq \text{Prop}$. The validity relation $\models \subseteq \mathcal{P}(\text{Prop}) \times \text{Form}$ is defined inductively by:

- $\mathcal{M} \models P$ iff $P \in \mathcal{M}$
- $\mathcal{M} \models \neg A$ iff $\mathcal{M} \not\models A$
- $\mathcal{M} \models A \land B$ iff $\mathcal{M} \models A$ and $\mathcal{M} \models B$
- $\mathcal{M} \models A \lor B$ iff $\mathcal{M} \models A$ or $\mathcal{M} \models B$
- $\mathcal{M} \models A \rightarrow B$ iff $\mathcal{M} \not\models A$ or $\mathcal{M} \models B$

Remark

The two semantics are equivalent. In fact, valuations are in bijection with propositional models. In particular, each valuation ρ determines a model $\mathcal{M}_\rho = \{P \in \text{Prop} \mid \rho(P) = T\}$ s.t.

$$\mathcal{M}_\rho \models A \iff \llbracket A \rrbracket_\rho = T,$$

which can be proved by induction on A. Henceforth, we adopt the latter semantics.

Definition

- A formula A is valid in a model \mathcal{M} (or \mathcal{M} satisfies A), iff $\mathcal{M} \models A$. When $\mathcal{M} \not\models A$, A is said refuted by \mathcal{M}.
- A formula A is satisfiable iff there exists some model \mathcal{M} such that $\mathcal{M} \models A$. It is refutable iff some model refutes A.
- A formula A is valid (also called a tautology) iff every model satisfies A. A formula A is a contradiction iff every model refutes A.

Let \mathcal{M} and \mathcal{M}' be two propositional models and let A be a formula. If for any propositional symbol P occurring in A, $\mathcal{M} \models P$ iff $\mathcal{M}' \models P$, then $\mathcal{M} \models A$ iff $\mathcal{M}' \models A$.

Proof.

By induction on A.

Remark

The previous proposition justifies that the truth table method suffices for deciding whether or not a formula is valid, which in turn guarantees that the validity problem of PL is decidable.

Definition

A is logically equivalent to B, (denoted by $A \equiv B$) iff A and B are valid exactly in the same models.

Some logical equivalences

- $\neg\neg A \equiv A$ (double negation)
- $\neg(A \land B) \equiv \neg A \lor \neg B$ (De Morgan’s laws)
- $A \rightarrow B \equiv \neg A \lor B$ (interdefinability)
- $A \land (B \lor C) \equiv (A \land B) \lor (A \land C)$ (distributivity)
- $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$
Remark
- \equiv is an equivalence relation on Form.
- Given $A \equiv B$, the replacement in a formula C of an occurrence of A by B produces a formula equivalent to C.
- The two previous results allow for equational reasoning in proving logical equivalence.

Definition
Given a propositional formula A, we say that it is in:
- **Conjunctive normal form** (CNF), if it is a conjunction of disjunctions of literals (atomic formulas or negated atomic formulas), i.e. $A = \bigwedge_i \bigvee_j l_{ij}$, for literals l_{ij};
- **Disjunctive normal form** (DNF), if it is a disjunction of conjunctions of literals, i.e. $A = \bigvee_i \bigwedge_j l_{ij}$, for literals l_{ij}.

Note that in some treatments, \bot is not allowed in literals.

Proposition
Any formula is equivalent to a CNF and to a DNF.

Proof.
The wanted CNF and DNF can be obtained by rewriting of the given formula, using the logical equivalences listed before.
Semantics

Notation

We let Γ, Γ', \ldots range over sets of formulas and use Γ, A to abbreviate $\Gamma \cup \{A\}$.

Definition

Let Γ be a set of formulas.

- Γ is **valid in a model** \mathcal{M} (or \mathcal{M} **satisfies** Γ), iff $\mathcal{M} \models A$ for every formula $A \in \Gamma$. We denote this by $\mathcal{M} \models \Gamma$.
- Γ is **satisfiable** iff there exists a model \mathcal{M} such that $\mathcal{M} \models \Gamma$, and it is **refutable** iff there exists a model \mathcal{M} such that $\mathcal{M} \not\models \Gamma$.
- Γ is **valid**, denoted by $\models \Gamma$, iff $\mathcal{M} \models \Gamma$ for every model \mathcal{M}, and it is **unsatisfiable** iff it is not satisfiable.

Definition

Let A be a formula and Γ a set of formulas. If every model that validates Γ also validates A, we say that Γ **entails** A (or A is a **logical consequence** of Γ).

We denote this by $\Gamma \models A$ and call $\models \subseteq \mathcal{P}(\text{Form }) \times \text{Form}$ the **semantic entailment** or **logical consequence** relation.
Semantics

Proposition

- **A is valid** iff \(\vdash A \), where \(\vdash \) abbreviates \(\emptyset \vdash A \).
- **A is a contradiction** iff \(A \vdash \bot \).
- **A \equiv B** iff \(A \vdash B \) and \(B \vdash A \). (or equivalently, \(A \leftrightarrow B \) is valid).

Proposition

The semantic entailment relation satisfies the following properties (of an abstract consequence relation):

- For all \(A \in \Gamma \), \(\Gamma \vdash A \). (inclusion)
- If \(\Gamma \vdash A \), then \(\Gamma, B \vdash A \). (monotonicity)
- If \(\Gamma \vdash A \) and \(\Gamma, A \vdash B \), then \(\Gamma \vdash B \). (cut)

Proposition

Further properties of semantic entailment are:

- \(\Gamma \vdash A \land B \) iff \(\Gamma \vdash A \) and \(\Gamma \vdash B \)
- \(\Gamma \vdash A \lor B \) iff \(\Gamma \vdash A \) or \(\Gamma \vdash B \)
- \(\Gamma \vdash A \rightarrow B \) iff \(\Gamma, A \vdash B \)
- \(\Gamma \vdash \neg A \) iff \(\Gamma, A \vdash \bot \)
- \(\Gamma \vdash A \) iff \(\Gamma, \neg A \vdash \bot \)
The natural deduction system \mathcal{N}_{PL}

- The proof system we will consider is a "natural deduction in sequent style" (not to confuse with a "sequent calculus"), which we name \mathcal{N}_{PL}.
- The "judgments" (or "assertions") of \mathcal{N}_{PL} are sequents $\Gamma \vdash A$, where Γ is a set of formulas (a.k.a. context or LHS) and A a formula (a.k.a. conclusion or RHS), informally meaning that "A can be proved from the assumptions in Γ".
- Natural deduction systems typically have "introduction" and "elimination" rules for each connective. The set of rules of \mathcal{N}_{PL} is below.

Rules of \mathcal{N}_{PL}

- **Introduction Rules:**
 - (Ax): \[\frac{}{\Gamma, A \vdash A} \]
 - (RAA): \[\frac{\Gamma, \lnot A \vdash \bot}{\Gamma \vdash A} \]
 - (I_\land): \[\frac{\Gamma \vdash A \qquad \Gamma \vdash B}{\Gamma \vdash A \land B} \]
 - (I_\lor i): \[\frac{\Gamma \vdash A_i}{\Gamma \vdash A_1 \lor A_2} \quad i \in \{1, 2\} \]
 - (I_\rightarrow): \[\frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B} \]

- **Elimination Rules:**
 - (E_\land i): \[\frac{\Gamma \vdash A_1 \land A_2}{\Gamma \vdash A_i} \quad i \in \{1, 2\} \]
 - (E_\lor): \[\frac{\Gamma \vdash A \lor B \quad \Gamma, A \vdash C}{\Gamma, B \vdash C} \]
 - (E_\rightarrow): \[\frac{\Gamma \vdash A \quad \Gamma \vdash A \rightarrow B}{\Gamma \vdash B} \]
 - (E_\lnot): \[\frac{\Gamma \vdash A}{\Gamma \vdash \lnot \lnot A} \]
Proof system

Definition

- A **derivation** of a sequent $\Gamma \vdash A$ is a tree of sequents, built up from *instances of the inference rules* of \mathcal{N}_{PL}, having as root $\Gamma \vdash A$ and as leaves instances of (Ax). (The set of \mathcal{N}_{PL}-derivations can formally be given as an inductive definition and has associated recursion and inductive principles.)

- Derivations induce a binary relation $\vdash \in \mathcal{P}(\text{Form}) \times \text{Form}$, called the **derivability/deduction relation**:
 - $(\Gamma, A) \in \vdash$ iff there is a derivation of the sequent $\Gamma \vdash A$ in \mathcal{N}_{PL};
 - typically we overload notation and abbreviate $(\Gamma, A) \in \vdash$ by $\Gamma \vdash A$, reading “$\Gamma \vdash A$ is derivable”, or “A can be derived (or deduced) from Γ”, or “Γ infers A”;

- A formula that can be derived from the empty context is called a **theorem**.

Definition

An inference rule is **admissible** in \mathcal{N}_{PL} if every sequent that can be derived making use of that rule can also be derived without it.
Proof system

Proposition

The following rules are admissible in \mathcal{N}_{PL}:

- **Weakening**
 \[\frac{\Gamma \vdash A}{\Gamma, B \vdash A} \]

- **Cut**
 \[\frac{\Gamma \vdash A \quad \Gamma, A \vdash B}{\Gamma \vdash B} \]

- **(⊥)**
 \[\frac{\Gamma \vdash \bot}{\Gamma \vdash A} \]

Proof.

- Admissibility of weakening is proved by induction on the premise’s derivation.
- Cut is actually a derivable rule in \mathcal{N}_{PL}, i.e. can be obtained through a combination of \mathcal{N}_{PL} rules.
- Admissibility of (⊥) follows by combining weakening and RAA.

Definition

Γ is said inconsistent if $\Gamma \vdash \bot$ and otherwise is said consistent.

Proposition

If Γ is consistent, then either $\Gamma \cup \{A\}$ or $\Gamma \cup \{\neg A\}$ is consistent (but not both).

Proof.

If not, one could build a derivation of $\Gamma \vdash \bot$ (how?), and Γ would be inconsistent.
Traditional presentations of natural deduction take formulas as judgements and not sequents. In these presentations:

- derivations are trees of formulas, whose leaves can be either “open” or “closed”;
- open leaves correspond to the assumptions upon which the conclusion formula (the root of the tree) depends;
- some rules allow for the closing of leaves (thus making the conclusion formula not depend on those assumptions).

For example, introduction and elimination rules for implication look like:

\[
\begin{align*}
\text{(E→)} & \quad \frac{A \rightarrow B \quad A}{B} \\
\text{(I→)} & \quad \frac{B}{A \rightarrow B}
\end{align*}
\]

In rule (I→), any number of occurrences of A as a leaf may be closed (signalled by the use of square brackets).
Theorem (Soundness)

If $\Gamma \vdash A$, *then* $\Gamma \models A$.

Proof.

By induction on the derivation of $\Gamma \vdash A$. Some of the cases are illustrated:

- **If the last step is**

 \[
 (\text{Ax}) \quad \frac{}{\Gamma', A \vdash A}
 \]

 We need to prove $\Gamma', A \models A$, which holds by the inclusion property of semantic entailment.

- **If the last step is**

 \[
 (\text{I}\rightarrow) \quad \frac{\Gamma, B \vdash C}{\Gamma \vdash B \rightarrow C}
 \]

 By IH, we have $\Gamma, B \models C$, which is equivalent to $\Gamma \models B \rightarrow C$, by one of the properties of semantic entailment.

- **If the last step is**

 \[
 (\text{E}\rightarrow) \quad \frac{\Gamma \vdash B \quad \Gamma \vdash B \rightarrow A}{\Gamma \vdash A}
 \]

 By IH, we have both $\Gamma \models B$ and $\Gamma \models B \rightarrow A$. From these, we can easily get $\Gamma \models A$.

\square
Definition

Γ is maximally consistent iff it is consistent and furthermore, given any formula A, either A or ¬A belongs to Γ (but not both can belong).

Proposition

Maximally consistent sets are closed for derivability, i.e. given a maximally consistent set Γ and given a formula A, Γ ⊢ A implies A ∈ Γ.

Lemma

If Γ is consistent, then there exists Γ′ ⊇ Γ s.t. Γ′ is maximally consistent.

Proof.

Let Γ₀ = Γ and consider an enumeration A₁, A₂, . . . of the set of formulas Form. For each of these formulas, define Γᵢ to be Γᵢ₋₁ ∪ {Aᵢ} if this is consistent, or Γᵢ₋₁ ∪ {¬Aᵢ} otherwise. (Note that one of these sets is consistent.) Then, we take Γ′ = ∪ᵢ Γᵢ. Clearly, by construction, Γ′ ⊇ Γ and for each Aᵢ either Aᵢ ∈ Γ′ or ¬Aᵢ ∈ Γ′. Also, Γ′ is consistent (otherwise some Γᵢ would be inconsistent).
Proposition

Γ is consistent iff Γ is satisfiable.

Proof.

The “if statement” follows from the soundness theorem. Let us proof the converse.

Let Γ’ be a maximally consistent extension of Γ (guaranteed to exist by the previous lemma) and define M as the set of proposition symbols that belong to Γ’.

Claim: M |= A iff A ∈ Γ’.

As Γ’ ⊇ Γ, M is a model of Γ, hence Γ is satisfiable.

The claim is proved by induction on A. Two cases are illustrated.

Case A = P. The claim is immediate by construction of M.

Case A = B → C. By IH and the fact that Γ’ is maximally consistent, M |= B → C is equivalent to ¬B ∈ Γ’ or C ∈ Γ’, which in turn is equivalent to B → C ∈ Γ’. The latter equivalence is proved with the help of the fact that Γ’, being maximally consistent, is closed for derivability.