Lecture 10: Live Sequence Charts & RE Wrap-Up

2018-06-11

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Topic Area Requirements Engineering: Content

- Introduction
- Requirements Specification
 - Desired Properties
 - Kinds of Requirements
 - Analysis Techniques
- Documents
 - Dictionary, Specification
- Specification Languages
 - Natural Language
 - Decision Tables
 - Syntax, Semantics
 - Completeness, Consistency, ...
 - Scenarios
 - User Stories, Use Cases
 - Live Sequence Charts
 - Syntax, Semantics
- Definition: Software & SW Specification
- Wrap-Up
LSC Semantics: TBA Construction
The TBA $B(L)$ of LSC L over C and E is $(G_B, Q, q_{\text{init}}, \rightarrow, Q_F)$ with

- $C_B = C \cup E_I^T$, where $E_I^T = \{ E_{i,j}^T \mid E \in E, i,j \in \mathbb{I} \}$.
- Q is the set of cuts of L, q_{init} is the instance heads cut.
- \rightarrow consists of loops, progress transitions (from $\rightarrow\gamma$), and legal exits (cold cond./local inv.).
- $Q_F = \{ C \in Q \mid \Theta(C) = \text{cold} \lor C = C \}$ is the set of cold cuts and the maximal cut.
Recall: The TBA $\mathcal{B}(L)$ of LSC L is $(C, Q, q_{ini}, \rightarrow, Q_F)$ with

- Q is the set of cuts of L, q_{ini} is the instance heads cut,
- $C_H = C \cup E'$,
- \rightarrow consists of loops, progress transitions (from $\rightarrow F$), and legal exits (cold cond./local inv.),
- $Q_F = \{ C \in Q \mid \Theta(C) = \text{cold} \lor C = L \}$ is the set of cold cuts.

So in the following, we “only” need to construct the transitions’ labels:

$$\rightarrow = \{(q, \psi_{\text{loop}}(q)) \mid q \in Q\} \cup \{(q, \psi_{\text{prog}}(q, q')) \mid q \rightarrow_F q'\} \cup \{(q, \psi_{\text{exit}}(q), L) \mid q \in Q\}$$
Loop Condition

\[
\psi_{\text{loop}}(q) = \psi_{\text{Msg}}(q) \land \psi_{\text{LocInv}}(q) \land \psi_{\text{Cond}}(q)
\]

- \(\psi_{\text{Msg}}(q) = \neg \bigvee_{1 \leq i \leq n} \psi_{\text{Msg}}(q, q_i) \land (\text{strict} \implies \psi_{\text{Msg}}(q, q_i) \land \psi_{\text{LocInv}}(q, q_i) \land \psi_{\text{LocInv}}(q, q_j))
\]

- \(\psi_{\text{LocInv}}(q) = \bigwedge_{l=(L,\theta), \lambda \in \text{LocInv}, \Theta(l) = \theta, l \text{ active at } q} \psi_{\text{LocInv}}(q, l)
\]

A location \(l\) is called **front location** of cut \(C\) if and only if \(\nexists \ l' \in C \mid l < l'\).

Local invariant \((l_0, \iota_0, \phi, l_1, \iota_1)\) is active at cut \((l)\) if and only if \(l_0 \leq l < l_1\) for some front location \(l\) of cut \(q\) or \(l = l_1 \land \iota_1 = \star\).

- \(\text{Msg}(F) = \{E_{l}(l', l') | (L, E, l) \in \text{Msg}, l \in F\} \cup \{E_{l}(l, l') | (L, E, l') \in \text{Msg}, l' \in F\}
\]

- \(\text{Msg}(F_1, \ldots, F_n) = \bigcup_{1 \leq i \leq n} \text{Msg}(F_i)
\]

Progress Condition

\[
\psi_{\text{Cond}}(q, q_1) = \psi_{\text{Msg}}(q, q_1) \land \psi_{\text{LocInv}}(q, q_1) \land \psi_{\text{Cond}}(q, q_1) \land \psi_{\text{LocInv}}(q, q_1)
\]

- \(\psi_{\text{Cond}}(q, q_1) = \bigwedge_{l=(L, \theta), \lambda \in \text{Cond}, \Theta(l) = \theta, L'(q_1 \backslash q) \neq \emptyset} \psi_{\text{Cond}}(q, q_1)
\]

- \(\psi_{\text{LocInv}}(q, l_1, q_1) = \bigwedge_{l=(L, \theta), \lambda \in \text{LocInv}, \Theta(l) = \theta, \lambda \text{ active at } q} \psi_{\text{LocInv}}(q, l_1, q_1)
\]

Local invariant \((l_0, \iota_0, \phi, l_1, \iota_1)\) is active at \(q\) if and only if
- \(l_0 < l < l_1\), or
- \(l = l_0 \land \iota_0 = \star\), or
- \(l = l_1 \land \iota_1 = \star\)

for some front location \(l\) of cut \((l)\).
Example (without strictness condition)
Content

- Live Sequence Charts
 - TBA Construction
 - LSCs vs. Software
 - Software and Software Specification, formally
 - Software satisfies Software Specification
 - Full LSC (without pre-chart)
 - Activation Condition & Activation Mode
 - (Slightly) Advanced LSC Topics
 - Full LSC with pre-chart
 - LSCs in Requirements Engineering
 - strengthening existential LSCs (scenarios) into universal LSCs (requirements)
 - LSCs in Quality Assurance

- Requirements Engineering Wrap-Up
 - Requirements Analysis in a Nutshell
 - Recall: Validation by Translation

- Outlook: Formal Methods in Design & QA

Excursion: Symbolic Büchi Automata
Symbolic Büchi Automata

Definition. A **Symbolic Büchi Automaton** (TBA) is a tuple

\[B = (C_B, Q, q_{init}, \rightarrow, Q_F) \]

where

- \(C_B \) is a set of atomic propositions,
- \(Q \) is a finite set of states,
- \(q_{init} \in Q \) is the initial state,
- \(\rightarrow \subseteq Q \times \Phi(C_B) \times Q \) is the finite transition relation. Each transition \((q, \psi, q') \in \rightarrow \) from state \(q \) to state \(q' \) is labelled with a propositional formula \(\psi \in \Phi(C_B) \).
- \(Q_F \subseteq Q \) is the set of fair (or accepting) states.

Example:

\[B_{sym}: \Sigma = \{a, b, c, d\} \rightarrow B \]
Definition. Let \(B = (C_B, Q, q_{ini}, \rightarrow, Q_F) \) be a TBA and
\[
w = \sigma_1, \sigma_2, \sigma_3, \ldots \in (C_B \rightarrow B)^\omega
\]
an infinite word, each letter is a valuation of \(C_B \).
An infinite sequence
\[
\varrho = q_0, q_1, q_2, \ldots \in Q^\omega
\]
of states is called run of \(B \) over \(w \) if and only if
1. \(q_0 = q_{ini} \),
2. for each \(i \in \mathbb{N}_0 \) there is a transition \((q_i, \psi_i, q_{i+1}) \in \rightarrow \text{ s.t. } \sigma_i \models \psi_i \).

Example:
\[
\begin{array}{c}
\text{B}_{sym}: \\
\begin{array}{c}
\text{Σ = } \{(a, b, c, d) \rightarrow B\}
\end{array}
\end{array}
\]
\[
w = \{a \mapsto \text{true}, b \mapsto \text{true}, c \mapsto \text{false}, d \mapsto \text{false}\}, \{c\}, \{a, b\}, (\{d\}, \{a, b\})^\omega
\]
\[
\{a, b\} \text{ for short}
\]

The Language of a TBA

Definition. We say TBA \(B = (C_B, Q, q_{ini}, \rightarrow, Q_F) \) accepts the word
\[
w = (\sigma_i)_{i \in \mathbb{N}_0} \in (C_B \rightarrow B)^\omega
\]
if and only if \(B \) has a run \(\varrho \) of states that are visited infinitely often by \(\varrho \), i.e.,
\[
\forall i \in \mathbb{N}_0 \exists j > i : q_j \in Q_F.
\]
We call the set \(\text{Lang}(B) \subseteq (C_B \rightarrow B)^\omega \) of words that are accepted by \(B \) the language of \(B \).
$w = \{\}, \{E_{1}^{U,V}, E_{1}^{U,V}\}, \{pSOFT_{1}^{U,V}, pSOFT_{1}^{U,V}\}, \{\}, \{\}, \{SOFT_{1}^{V,U}, SOFT_{1}^{V,U}\}, \{\} \ldots \\
\in \text{Lang}(\mathcal{B}(\mathcal{L}))$
Excursion: Software Specification, Formally

Formal Methods in Requirements Engineering

- Recall:
 - We would like to precisely and objectively specify the set of allowed softwares that make the customer happy.
 - (The designers and developers then choose one from the set.)

- In other words, we want to formally define a satisfies relation between softwares and software specifications.
 - That is, given a software \(S \) and a software specification \(\mathcal{F} \), we want to define when (and only when) software \(S \) satisfies software specification \(\mathcal{F} \), denoted by
 \[
 S \models \mathcal{F}.
 \]

- Once again:
 - \(S \models \mathcal{F} \): specification is satisfied, \(S \) is one "allowed" design, should be accepted.
 - \(S \not\models \mathcal{F} \): specification is not satisfied, \(S \) may not satisfy customer's needs.
Software, formally

Definition. Software is a finite description S of a (possibly infinite) set $[S]$ of (finite or infinite) computation paths of the form

$$\sigma_0 \xrightarrow{\alpha_1} \sigma_1 \xrightarrow{\alpha_2} \sigma_2 \ldots$$

where

- $\sigma_i \in \Sigma, i \in \mathbb{N}_0$, is called state (or configuration), and
- $\alpha_i \in A, i \in \mathbb{N}_0$, is called action (or event).

The (possibly partial) function $[\cdot] : S \mapsto [S]$ is called interpretation of S.

Example: room ventilation system

- $\Sigma = \{b, on, off, go, stop\} \rightarrow \mathbb{B}$, $A = \{\tau\}$.
- computation path:

 \[
 \begin{pmatrix}
 b \mapsto false \\
 on \mapsto false \\
 off \mapsto true \\
 go \mapsto false \\
 stop \mapsto false \\
 \end{pmatrix} =
 \begin{pmatrix}
 \text{off } \\
 \text{on } \\
 \end{pmatrix}
 \xrightarrow{\tau}
 \begin{pmatrix}
 b \\
 off \\
 \end{pmatrix}
 \xrightarrow{\tau}
 \begin{pmatrix}
 \text{on } \\
 \text{off } \\
 \end{pmatrix}
 \xrightarrow{\tau}
 \begin{pmatrix}
 b \\
 \text{stop } \\
 \end{pmatrix}
 \xrightarrow{\tau}
 \begin{pmatrix}
 \text{off } \\
 \end{pmatrix}
 \ldots
 \]

Software, formally

Definition. Software is a finite description S of a (possibly infinite) set $[S]$ of (finite or infinite) computation paths of the form

$$\sigma_0 \xrightarrow{\alpha_1} \sigma_1 \xrightarrow{\alpha_2} \sigma_2 \ldots$$

where

- $\sigma_i \in \Sigma, i \in \mathbb{N}_0$, is called state (or configuration), and
- $\alpha_i \in A, i \in \mathbb{N}_0$, is called action (or event).

The (possibly partial) function $[\cdot] : S \mapsto [S]$ is called interpretation of S.

Example: vending machine

- computation path:

 \[
 \sigma_0 \xrightarrow{\tau} \sigma_1 \xrightarrow{E_{1,U,V}} \sigma_2 \xrightarrow{psOFT_{U,V}} \sigma_3 \xrightarrow{\tau} \sigma_4 \xrightarrow{\tau} \sigma_5 \xrightarrow{\tau} \sigma_6 \xrightarrow{SOFT_{V,U}} \ldots
 \]

 - machine switched on
 - user inserts $f \in \text{buttons}$ light up
 - user presses SOFT button
 - prepare dispenser
 - drink ready
 - notify user
Definition. A software specification \mathcal{S} is a finite description of a (possibly infinite) set \mathcal{L} of softwares, i.e.

$$\mathcal{L} = \{(S_1, [\cdot]), (S_2, [\cdot]), \ldots \}.$$ The (possibly partial) function $[\cdot] : \mathcal{S} \mapsto \mathcal{L}$ is called interpretation of \mathcal{S}.

Definition. Software $(S, [\cdot])$ satisfies software specification \mathcal{S}, denoted by $S \models \mathcal{S}$, if and only if

$$(S, [\cdot]) \in \mathcal{L}.$$

Software Satisfies Software Specification: Example

Software Specification \mathcal{S}:

<table>
<thead>
<tr>
<th>T: room ventilation</th>
<th>r_1</th>
<th>r_2</th>
<th>r_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>b button pressed?</td>
<td>\times</td>
<td>\times</td>
<td>$-$</td>
</tr>
<tr>
<td>off ventilation off?</td>
<td>$-$</td>
<td>$-$</td>
<td>$+$</td>
</tr>
<tr>
<td>on ventilation on?</td>
<td>$-$</td>
<td>$-$</td>
<td>$+$</td>
</tr>
<tr>
<td>go start ventilation</td>
<td>\times</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>stop stop ventilation</td>
<td>$-$</td>
<td>\times</td>
<td>$-$</td>
</tr>
</tbody>
</table>

Define: $(S, [\cdot]) \in \mathcal{L}$ if and only if for all

$$\sigma_0 \xrightarrow{\alpha_1} \sigma_1 \xrightarrow{\alpha_2} \sigma_2 \cdots \in [S]$$

and for all $i \in \mathbb{N}_0$,

$$\exists \tau \in T \bullet r_i \models \mathcal{F}(r_i).$$

Software:

- Assume we have a program S for the room ventilation controller.
- Assume we can observe at well-defined points in time the conditions b, off, on, go, stop when the software runs.
- Then the behaviour $[S]$ of S can be viewed as computation paths of the form

$$\sigma_0 \xrightarrow{\alpha} \sigma_1 \xrightarrow{\alpha} \sigma_2 \cdots$$

where each σ_i is a valuation of b, off, on, go, stop, i.e. $\sigma_i : \{b, \text{off}, \text{on}, \text{go}, \text{stop}\} \rightarrow \mathbb{B}$.

Software Satisfies Software Specification: Another Example,

Software Specification

\[\mathcal{S} : \]

- Assume we can observe at well-defined points in time the observables relevant for the LSC (conditions and messages) when the software \(S \) runs.
- Then the behaviour \(\llbracket S \rrbracket \) of \(S \) can be viewed as computation paths over the LSC's observables.
- And then we can relate \(S \) to \(\mathcal{S} \).

Define: \((S, [\cdot]) \in \llbracket \mathcal{S} \rrbracket \) if and only if

- \texttt{tja...} (in a minute)

Software

Back to LSCs vs. Software
A software S is called compatible with LSC L over C and E if and only if

- $\Sigma = (C \rightarrow B), C \subseteq C$, i.e. the states comprise valuations of the conditions in C,
- $A = (B \rightarrow B), E_{I}^{\Sigma} \subseteq B$, i.e. the events comprise valuations of E_{I}^{Σ}.

A computation path $\pi = \sigma_{0}^{\alpha_{1}} \alpha_{2}^{\sigma_{2}} \cdots \in [S]$ of software S induces the word

$$w(\pi) = (\sigma_{0} \cup \alpha_{1}), (\sigma_{1} \cup \alpha_{2}), (\sigma_{2} \cup \alpha_{3}), \ldots,$$

we use W_{S} to denote the set of words induced by $[S]$, i.e.

$$W_{S} = \{w(\pi) \mid \pi \in [S]\}.$$
The Plan: A Formal Semantics for a Visual Formalism

Content

- Live Sequence Charts
 - TBA Construction
 - LSCs vs. Software
 - Software and Software Specification, formally
 - Software satisfies Software Specification
 - Full LSC (without pre-chart)
 - Activation Condition & Activation Mode
- (Slightly) Advanced LSC Topics
 - Full LSC with pre-chart
- LSCs in Requirements Engineering
 - strengthening existential LSCs (scenarios)
 into universal LSCs (requirements)
- LSCs in Quality Assurance
- Requirements Engineering Wrap-Up
 - Requirements Analysis in a Nutshell
 - Recall: Validation by Translation
- Outlook: Formal Methods in Design & QA
Activation Condition and Mode

Full LSC Syntax (without pre-chart)

A full LSC $\mathcal{L} = (MC, ac_0, am, \Theta_{\mathcal{L}})$ consists of

- (non-empty) main-chart $MC = ((L_M, \preceq_M, \sim_M), I_M, Msg_M, Cond_M, LocInv_M, \Theta_M)$,
- activation condition $ac_0 \in \Phi(\mathcal{C})$,
- strictness flag $strict$ (if false, \mathcal{L} is permissive)
- activation mode $am \in \{ \text{initial, invariant} \}$,
- chart mode $\Theta_{\mathcal{L}} = \text{existential}$ ($\Theta_{\mathcal{L}} = \text{cold}$) or universal ($\Theta_{\mathcal{L}} = \text{hot}$).
Software Satisfies LSC

Let \(S \) be a software which is compatible with LSC \(\mathcal{L} \) (without pre-chart).
We say software \(S \) satisfies LSC \(\mathcal{L} \), denoted by \(S \models \mathcal{L} \), if and only if

\[
\Theta_{\mathcal{L}} \quad \text{am = initial} \quad \text{am = invariant}
\]

\[
\begin{align*}
\text{cold} & : \quad \exists w \in W_G \bullet w^0 : \neg w_{\text{out}}(C_0) \\
& \land w^0 \models \psi_{\text{prog}}(0, C_0) \land w/1 \in \text{Lang}(\mathcal{L}(\mathcal{L})) \\
\text{hot} & : \quad \forall w \in W_G \bullet w^0 : \neg w_{\text{out}}(C_0) \\
& \Rightarrow w^0 \models \psi_{\text{prog}}(0, C_0) \land w/1 \in \text{Lang}(\mathcal{L}(\mathcal{L}))
\end{align*}
\]

where and \(C_0 \) is the minimal (or instance heads) cut of the main-chart.

Software Satisfies LSC

Let \(S \) be a software which is compatible with LSC \(\mathcal{L} \) (without pre-chart).
We say software \(S \) satisfies LSC \(\mathcal{L} \), denoted by \(S \models \mathcal{L} \), if and only if

\[
\Theta_{\mathcal{L}} \quad \text{am = initial} \quad \text{am = invariant}
\]

\[
\begin{align*}
\text{cold} & : \quad \exists w \in W_G \bullet w^0 : \neg w_{\text{out}}(C_0) \\
& \land w^0 \models \psi_{\text{prog}}(0, C_0) \land w/1 \in \text{Lang}(\mathcal{L}(\mathcal{L})) \\
\text{hot} & : \quad \forall w \in W_G \bullet w^0 : \neg w_{\text{out}}(C_0) \\
& \Rightarrow w^0 \models \psi_{\text{prog}}(0, C_0) \land w/1 \in \text{Lang}(\mathcal{L}(\mathcal{L}))
\end{align*}
\]

where and \(C_0 \) is the minimal (or instance heads) cut of the main-chart.

Software \(S \) satisfies a set of LSCs \(\mathcal{L}_1, \ldots, \mathcal{L}_n \) if and only if \(S \models \mathcal{L}_i \) for all \(1 \leq i \leq n \).
Example: Vending Machine

- **Positive scenario:** Buy a Softdrink
 We (only) accept the software if it is possible to buy a softdrink.
 (i) Insert one 1 euro coin.
 (ii) Press the 'softdrink' button.
 (iii) Get a softdrink.

- **Positive scenario:** Get Change
 We (only) accept the software if it is possible to get change.
 (i) Insert one 50 cent and one 1 euro coin.
 (ii) Press the 'softdrink' button.
 (iii) Get a softdrink.
 (iv) Get 50 cent change.

- **Requirement:** Perform Self-Test on Power-on
 We (only) accept the software if it always performs a self-test on power-on.
 (i) Check water dispenser.
 (ii) Check softdrink dispenser.
 (iii) Check tea dispenser.
(Slightly) Advanced LSC Topics
A full LSC \(\mathcal{L} = (PC, MC, ac_0, am, \Theta_{\mathcal{L}}) \) consists of

- **pre-chart** \(PC = ((\mathcal{L}_P, \leq_P, \sim_P), I_P, \text{Msg}_P, \text{Cond}_P, \text{LocInv}_P, \Theta_P) \) (possibly empty),
- (non-empty) **main-chart** \(MC = ((\mathcal{L}_M, \leq_M, \sim_M), I_M, \text{Msg}_M, \text{Cond}_M, \text{LocInv}_M, \Theta_M) \),
- **activation condition** \(ac_0 \in \Phi(C) \),
- **strictness flag** `strict` (if false, \(\mathcal{L} \) is permissive)
- **activation mode** \(am \in \{\text{initial}, \text{invariant}\} \),
- **chart mode** existential \((\Theta_{\mathcal{L}} = \text{cold})\) or universal \((\Theta_{\mathcal{L}} = \text{hot})\).

LSC Semantics with Pre-chart

where \(C_0^P \) and \(C_0^M \) are the minimal (or instance heads) cuts of pre- and main-chart.
Example: Vending Machine

- **Requirement**: Buy Water
 We (only) accept the software if,
 (i) Whenever we insert 0.50 €,
 (ii) and press the 'water' button (and no other button),
 (iii) and there is water in stock,
 (iv) then we get water (and nothing else).

- **Negative scenario**: A Drink for Free
 We don't accept the software if it is possible to get a drink for free.
 (i) Insert one 1 euro coin.
 (ii) Press the 'softdrink' button.
 (iii) Do not insert any more money.
 (iv) Get two softdrinks.
LSCs in Requirements Analysis
One quite effective approach:

(i) **Approximate** the software requirements: ask for positive / negative **existential scenarios**.

- **Ask** the customer to describe example usages of the desired system.
 In the sense of: “If the system is not at all able to do this, then it’s not what I want.”
 (→ positive use-cases, existential LSC)

- **Ask** the customer to describe behaviour that **must not happen** in the desired system.
 In the sense of: “If the system does this, then it’s not what I want.”
 (→ negative use-cases, LSC with pre-chart and hot-false)

(ii) **Refine** result into **universal scenarios** (and validate them with customer).

- **Investigate** preconditions, side-conditions, exceptional cases and corner-cases.
 (→ extend use-cases, refine LSCs with conditions or local invariants)

- **Generalise** into universal requirements, e.g., **universal LSCs**.

- **Validate** with customer using new positive / negative scenarios.
Strengthening Scenarios Into Requirements

- **Ask customer for (pos./neg.) scenarios, note down as existential LSCs:**

- **Strengthen into requirements, note down as universal LSCs:**

- **Re-Discuss** with customer using example words of the LSCs’ language.
LSCs vs. Quality Assurance

How to Prove that a Software Satisfies an LSC?

* Software S satisfies existential LSC \mathcal{Z} if there exists $\pi \in \llbracket S \rrbracket$ such that \mathcal{Z} accepts $w(\pi)$. Prove $S \models \mathcal{Z}$ by demonstrating π.

* Note: Existential LSCs* may hint at test-cases for the acceptance test!
 (+: as well as (positive) scenarios in general, like use-cases)
How to Prove that a Software Satisfies an LSC?

- Software S satisfies existential LSC L if there exists $\pi \in \llbracket S \rrbracket$ such that L accepts $w(\pi)$. Prove $S \models L$ by demonstrating π.

- Note: Existential LSCs* may hint at test-cases for the acceptance test! (= as well as (positive) scenarios in general, like use-cases)

- Universal LSCs (and negative/anti-scenarios!) in general need an exhaustive analysis! (Because they require that the software never ever exhibits the unwanted behaviour.) Prove $S \not\models L$ by demonstrating one π such that $w(\pi)$ is not accepted by L.

Pushing Things Even Further

(Harel and Marelly, 2003)
Tell Them What You’ve Told Them...

- **Live Sequence Charts** (if well-formed)
 - have an abstract syntax: instance lines, messages, conditions, local invariants; mode: hot or cold.

- From an abstract syntax, mechanically construct its **TBA**.

- An **LSC** is **satisfied** by a software S if and only if
 - **existential** (cold):
 - there is a word induced by a computation path of S
 - which is accepted by the LSC’s pre/main-chart TBA.
 - **universal** (hot):
 - all words induced by the computation paths of S
 - are accepted by the LSC’s pre/main-chart TBA.

- **Pre-charts** allow us to
 - specify **anti-scenarios** ("this must not happen"),
 - contrain activation.

- **Method**:
 - discuss (anti-)scenarios with customer,
 - generalise into universal LSCs and re-validate.

Requirements Engineering Wrap-Up
Risks Implied by Bad Requirements Specifications

- **design and implementation.**
 - without specification, programmers may just “ask around” when in doubt, possibly yielding different interpretations → **difficult integration**

- **negotiation** (with customer, marketing department, or ...)

- **documentation,** e.g., the user’s manual.
 - without specification, the user’s manual author can only describe what the system does, not what it should do ("every observation is a feature")

- **later re-implementations.**
 - the new software may need to adhere to requirements of the old software; if not properly specified, the new software needs to be a 1:1 re-implementation of the old → **additional effort**

- **preparation of tests,**
 - without a description of allowed outcomes, tests are randomly searching for generic errors (like crashes) → **systematic testing hardly possible**

- **acceptance by customer,** resolving later objections or regress claims.
 - without specification, it is unclear at delivery time whether behaviour is an error (developer needs to fix) or correct (customer needs to accept and pay) → **nasty disputes, additional effort**

- **re-use,**
 - without specification, re-use needs to be based on re-reading the code → **risk of unexpected changes**
• Customers **may not know** what they want.
 • That’s in general not their “fault”!
 • Care for **tacit** requirements.
 • Care for **non-functional** requirements / constraints.

• For **requirements elicitation**, consider starting with
 • **scenarios** ("positive use case") and **anti-scenarios** ("negative use case")
 and elaborate corner cases.
 Thus, **use cases** can be **very useful** — use case **diagrams** not so much.

• Maintain a **dictionary** and high-quality descriptions.

• Care for **objectiveness** / **testability** early on.
 Ask for each requirements: what is the **acceptance test**?

• **Use formal notations**
 • to **fully understand requirements** (precision),
 • for **requirements analysis** (completeness, etc.),
 • to communicate with your developers.

• If in doubt, **complement** (formal) **diagrams with text**
 (as safety precaution, e.g., in lawsuits).

Formalisation Validation

Two broad directions:

- **Option 1**: teach formalism (usually not economic).
- **Option 2**: serve as translator / mediator.

1. Domain experts tell system scenario S (maybe keep back, whether allowed / forbidden).
2. FM expert translates system scenario to valuation σ.
3. FM expert evaluates DT on σ.
4. FM expert translates outcome to "allowed / forbidden by DT".
5. Compare expected outcome and real outcome.

Recommendation: (Course’s Manifesto?)

- Use formal methods for the **most important/intricate requirements**
 (formalising all requirements is in most cases **not possible**),
- Use the **most appropriate formalism** for a given task,
- Use formalisms that you **know** (really) well.
(Strong) Literature Recommendation

(Rupp and die SOPHiSTen, 2014)

Big-Picture Outlook
Example: Software Specification

Alphabet:
- M – dispense cash only,
- C – return card only,
- MC – dispense cash and return card.

- **Customer 1:** “don’t care”
 \[\mathcal{S}_1 = \left(M.C \mid C.M \mid M \right)^\omega \]
- **Customer 2:** “you choose, but be consistent”
 \[\mathcal{S}_2 = (M.C)^\omega \text{ or } (C.M)^\omega \]
- **Customer 3:** “consider human errors”
 \[\mathcal{S}_3 = (C.M)^\omega \]

Formal Methods in the Software Development Process
References

