• **Introduction and Vocabulary**

• **Software Modelling**
 - model; views / viewpoints; 4+1 view

• **Modelling structure**
 - (simplified) class & object diagrams
 - (simplified) object constraint logic (OCL)

• **Principles of Design**
 - modularity, separation of concerns
 - information hiding and data encapsulation
 - abstract data types, object orientation

• **Design Patterns**

• **Modelling behaviour**
 - communicating finite automata (CFA)
 - Uppaal query language

• **Unified Modelling Language (UML)**
 - basic state-machines
 - an outlook on hierarchical state-machines

• **Model-driven/-based Software Engineering**
Content

- **Communicating Finite Automata** (CFA)
 - concrete and abstract syntax,
 - networks of CFA,
 - operational semantics.

- **Transition Sequences**

- **Deadlock, Reachability**

- **Uppaal**
 - tool demo (simulator),
 - query language,
 - CFA model-checking.

- **CFA at Work**
 - drive to configuration, scenarios, invariants
 - tool demo (verifier).

- **Uppaal Architecture**
Software Modelling

Analyst

(`Σ × A)^ω`
Communicating Finite Automata

presentation follows (Olderog and Dierks, 2008)
ChoicePanel:
(simplified)

- idle
- request_sent
- tea_selected
- soft_selected
- water_selected

- input action
- channel
- edges
- location
- update vector

- guard
- initial location

- updates

- water_enabled := false, soft_enabled := false, tea_enabled := false

- OK!
- DOK?
Channel Names and Actions

To define communicating finite automata, we need the following sets of symbols:

- A set \((a, b \in) \) Chan of **channel names** or **channels**.

- For each channel \(a \in \text{Chan} \), two **visible actions**:
 \(a? \) and \(a! \) denote **input** and **output** on the channel \((a?, a! \notin \text{Chan}) \).

- \(\tau \notin \text{Chan} \) represents an **internal action**, not visible from outside.

- \((\alpha, \beta \in) \) Act := \(\{a? | a \in \text{Chan}\} \cup \{a! | a \in \text{Chan}\} \cup \{\tau\} \) is the set of **actions**.

- An **alphabet** \(B \) is a set of **channels**, i.e. \(B \subseteq \text{Chan} \).

- For each alphabet \(B \), we define the corresponding **action set**
 \[B?! := \{a? | a \in B\} \cup \{a! | a \in B\} \cup \{\tau\}. \]

 Note: \(\text{Chan}?! = \text{Act} \).
• Let \((v, w \in V)\) be a set of (finite domain) integer variables. Including 0. \(v+w\)

By \((\varphi \in \Psi(V))\) we denote the set of integer expressions over \(V\) using function symbols +, −, . . . and relation symbols <, ≤, \(v<w\)

• A modification on \(v \in V\) is of the form

\[\mathbf{v} := \varphi, \quad v \in V, \quad \varphi \in \Psi(V).\]

By \(R(V)\) we denote the set of all modifications.

• By \(\vec{r}\) we denote a finite list \(\langle r_1, \ldots, r_n \rangle\), \(n \in \mathbb{N}_0\), of modifications \(r_i \in R(V)\). \(\vec{r}\) is called reset vector (or update vector).

\(\langle \rangle\) is the empty list \((n = 0)\).

• By \(R(V)^*\) we denote the set of all such finite lists of modifications.
Definition. A **communicating finite automaton** is a structure

\[\mathcal{A} = (L, B, V, E, \ell_{ini}) \]

where

- \((\ell \in) L\) is a finite set of **locations** (or **control states**),
- \(B \subseteq \text{Chan}\),
- \(V\): a set of data variables,
- \(E \subseteq L \times B_1 \times \Phi(V) \times R(V)^* \times L\): a finite set of **directed edges** such that
 \((\ell, \alpha, \varphi, \vec{r}, \ell') \in E \wedge \text{chan}(\alpha) \in U \implies \varphi = \text{true}\).

Edges \((\ell, \alpha, \varphi, \vec{r}, \ell')\) from location \(\ell\) to \(\ell'\) are labelled with an **action** \(\alpha\), a **guard** \(\varphi\), and a list \(\vec{r}\) of **modifications**.
- \(\ell_{ini} \in L\) is the **initial location**.
Example

\(L = \{ \text{idle, water_selected, ...} \} \)
\(B = \{ \text{WATER, OK, ...} \} \)
\(V = \{ \text{water_enabled, ...} \} \)

ChoicePanel: (simplified)

\[
E = \{ (\text{idle, WATER?}, \text{water_enabled}, \langle\rangle, \text{water_selected}) , \\
(\text{request_sent, n, true,}\langle\rangle, \text{half_idle}), ... \} \\
L = B \cup V \cup R(V)^* \cup L \\
\text{l}\text{ini} = \text{idle}
\]
Definition.
Let \(A_i = (L_i, B_i, V_i, E_i, \ell_{ini,i}), 1 \leq i \leq n \), be communicating finite automata.

The operational semantics of the network of CFA \(C(A_1, \ldots, A_n) \) is the labelled transition system

\[
T(C(A_1, \ldots, A_n)) = (Conf, Chan \cup \{\tau\}, \{\stackrel{\lambda}{\rightarrow} | \lambda \in Chan \cup \{\tau\}\}, C_{ini})
\]

where

- \(V = \bigcup_{i=1}^{n} V_i \), valuation of \(V \)
- \(Conf = \{\langle \ell, \nu \rangle | \ell \in L_i, \nu: V \rightarrow \mathcal{D}(V)\} \), valuation of \(V \)
- \(C_{ini} = \langle \vec{\ell}_{ini}, \nu_{ini} \rangle \) with \(\nu_{ini}(v) = 0 \) for all \(v \in V \).

The transition relation consists of transitions of the following two types.
• \(\nu : V \rightarrow \mathcal{D}(V) \) is a **valuation** of the variables,

• A valuation \(\nu \) of the variables canonically assigns an integer value \(\nu(\varphi) \) to each integer expression \(\varphi \in \Phi(V) \).

• \(\models \subseteq (V \rightarrow \mathcal{D}(V)) \times \Phi(V) \) is the canonical **satisfaction relation** between valuations and integer expressions from \(\Phi(V) \).

• **Effect of modification** \(r \in R(V) \) on \(\nu \), denoted by \(\nu[r] \):

\[
\begin{align*}
\nu[\nu' := \varphi](a) & := \\
& \begin{cases}
\nu(\varphi), & \text{if } a = \nu, \\
\nu(a), & \text{otherwise}
\end{cases}
\end{align*}
\]

• We set \(\nu[\langle r_1, \ldots, r_n \rangle] := \nu[r_1] \ldots [r_n] = (((\nu[r_1])[r_2]) \ldots)[r_n] \).

That is, modifications are executed sequentially from left to right.
Operational Semantics of Networks of CFA

\(\langle \vec{e}, \nu \rangle, \langle \vec{e}', \nu' \rangle \in \mathcal{E} \xrightarrow{\tau} \langle \vec{e}', \nu' \rangle \)

- An **internal transition** \(\langle \vec{e}, \nu \rangle \xrightarrow{\tau} \langle \vec{e}', \nu' \rangle \) occurs if there is \(i \in \{1, \ldots, n\} \) and there is a \(\tau \)-edge \((\vec{e}_i, \tau, \vec{r}, \vec{e}_i') \in E_i\) such that
 - \(\nu \models \varphi \), "source valuation satisfies guard"
 - \(\vec{e}' = \vec{e}[\vec{r}_i] \), "automaton \(i \) changes location"
 - \(\nu' = \nu[\vec{r}] \), "\(\nu' \) is the result of applying \(\vec{r} \) on \(\nu \)"

- A **synchronisation transition** \(\langle \vec{e}, \nu \rangle \xrightarrow{b} \langle \vec{e}', \nu' \rangle \) occurs if there are \(i, j \in \{1, \ldots, n\} \) with \(i \neq j \) and there are edges \((\vec{e}_i, b!, \varphi_i, \vec{r}_i, \vec{e}_i') \in E_i\) and \((\vec{e}_j, b?, \varphi_j, \vec{r}_j, \vec{e}_j') \in E_j\) such that
 - \(\nu \models \varphi_i \land \varphi_j \), "source valuation satisfies guards (!)"
 - \(\vec{e}' = \vec{e}[\vec{r}_i][\vec{r}_j] \), "automaton \(i \) and \(j \) change location"
 - \(\nu' = \nu[\vec{r}_i][\vec{r}_j] \), "\(\nu' \) is the result of applying first \(\vec{r}_i \) and then \(\vec{r}_j \) on \(\nu \)"

This style of communication is known under the names "**rendezvous**, "**synchronous**, "**blocking**" communication (and possibly many others).
ChoicePanel: (simplified)

Example

User:

C50!

E1!

WATER!

SOFT!

TEA!

ChoicePanel:

idle

SOFT?

soft_enabled

TEA?

tea_enabled

water_enabled := false, soft_enabled := false, tea_enabled := false

half_idle

water_enabled := true

water_selected

soft_selected

request_sent

DOK?

OK!

water_enabled := false, soft_enabled := false, tea_enabled := false

DTEA!

DWATER!

DSOFT!

tea_enabled

TEA?

soft_enabled

SOFT?

water_enabled

WATER?

Cini:

< (idle, l), s = 0 >

< (idlle, l), t = 0 >

< (water_selected, l), s = 0 >

< (water_selected, l), t = 0 >

< (request_sent, l), s = 1 >

< (request_sent, l), t = 0 >

< (water_selected, l), s = 1 >

< (water_selected, l), t = 0 >

< (water_selected, l), s = 0 >

< (water_selected, l), t = 1 >
A transition sequence of $C(A_1, \ldots, A_n)$ is any (in)finite sequence of the form

$$(\vec{\ell}_0, \nu_0) \xrightarrow{\lambda_1} (\vec{\ell}_1, \nu_1) \xrightarrow{\lambda_2} (\vec{\ell}_2, \nu_2) \xrightarrow{\lambda_3} \ldots$$

with

- $(\vec{\ell}_0, \nu_0) = C_{\text{ini}}$ (without "start/ from")
- for all $i \in \mathbb{N}$, there is $\xrightarrow{\lambda_{i+1}}$ in $T(C(A_1, \ldots, A_n))$ with $(\vec{\ell}_i, \nu_i) \xrightarrow{\lambda_{i+1}} (\vec{\ell}_{i+1}, \nu_{i+1})$.
A configuration \(\langle \ell, \nu \rangle \) of \(C(A_1, \ldots, A_n) \) is called deadlock if and only if there are no transitions from \(\langle \ell, \nu \rangle \), i.e. if
\[
\neg \left(\exists \lambda \in \Lambda \ \exists \langle \ell', \nu' \rangle \in Conf \bullet \langle \ell, \nu \rangle \xrightarrow{\lambda} \langle \ell', \nu' \rangle \right).
\]

The network \(C(A_1, \ldots, A_n) \) is said to have a deadlock if and only if there is a reachable configuration \(\langle \ell, \nu \rangle \) which is a deadlock.
Reachability

- A configuration $\langle \vec{l}, \nu \rangle$ is called **reachable** (in $C(A_1, \ldots, A_n)$) from $\langle \vec{l}_0, \nu_0 \rangle$ if and only if there is a transition sequence of the form

$$\langle \vec{l}_0, \nu_0 \rangle \xrightarrow{\lambda_1} \langle \vec{l}_1, \nu_1 \rangle \xrightarrow{\lambda_2} \langle \vec{l}_2, \nu_2 \rangle \xrightarrow{\lambda_3} \ldots \xrightarrow{\lambda_n} \langle \vec{l}_n, \nu_n \rangle = \langle \vec{l}, \nu \rangle.$$

- A configuration $\langle \vec{l}, \nu \rangle$ is called **reachable** (without “from”!) if and only if it is reachable from C_{ini}.

- A location $l \in L_i$ is called **reachable** if and only if any configuration $\langle \vec{l}, \nu \rangle$ with $l_i = l$ is reachable, i.e. there exist \vec{l} and ν such that $l_i = l$ and $\langle \vec{l}, \nu \rangle$ is reachable.
Uppaal

(Larsen et al., 1997; Behrmann et al., 2004)
The Uppaal Query Language

Consider $\mathcal{N} = C(A_1, \ldots, A_n)$ over data variables V.

- **basic formula:**

 \[
 atom ::= A_i.\ell \mid \varphi \mid \text{deadlock}
 \]

 where $\ell \in L_i$ is a location and φ an expression over V.

- **configuration formulae:**

 \[
 term ::= atom \mid \text{not} \ term \mid term_1 \text{ and } term_2
 \]

- **existential path formulae:**

 \[
 e\text{-}formula ::= \exists\lozenge term \quad \text{(exists finally)}
 \]

 \[
 | \exists\square term \quad \text{(exists globally)}
 \]

- **universal path formulae:**

 \[
 a\text{-}formula ::= \forall\lozenge term \quad \text{(always finally)}
 \]

 \[
 | \forall\square term \quad \text{(always globally)}
 \]

 \[
 | term_1 \rightarrow term_2 \quad \text{(leads to)}
 \]

- **formulae (or queries):**

 \[
 F ::= e\text{-}formula \mid a\text{-}formula
 \]
The satisfaction relation

\[\langle \vec{\ell}, \nu \rangle \models F \]

between configurations

\[\langle \vec{\ell}, \nu \rangle = \langle (\ell_1, \ldots, \ell_n), \nu \rangle \]

deadlock configuration

iff \(\ell_0, i \) is a deadlock configuration

iff \(\nu \models \chi \)

iff \(\langle \vec{\ell}, \nu \rangle \neq \text{term} \)

iff \(\langle \vec{\ell}, \nu \rangle \models \text{term}_1 \) and \(\text{term}_2 \)

iff \(\langle \vec{\ell}, \nu \rangle \models \text{term}_1 \), \(i = 1, 2 \)
Example: Computation Paths vs. Computation Tree

ChoicePanel:

User:

WATER?

soft_selected

TEA?

water_selected

idle

SOFT?

request_sent

OK!

DOK?

OK!

water_enabled := false, soft_enabled := false, tea_enabled := false

DTEA!

DWATER!

DSOFT!

tea_enabled

TEA?

soft_enabled

SOFT?

water_enabled

WATER?

WATER

τ

SOFT

τ

C50!

l

WATER!

E1!

TEA!

WATER

\langle (\text{water_selected}, l), \begin{array}{c} \text{we} = 1 \\ \text{se} = 1 \\ \text{te} = 0 \end{array} \rangle

SOFT

\langle (\text{soft_selected}, l), \begin{array}{c} \text{we} = 1 \\ \text{se} = 1 \\ \text{te} = 0 \end{array} \rangle

\langle (\text{request_sent}, l), \begin{array}{c} \text{we} = 1 \\ \text{se} = 1 \\ \text{te} = 0 \end{array} \rangle

\langle (\text{request_sent}, l), \begin{array}{c} \text{we} = 1 \\ \text{se} = 1 \\ \text{te} = 0 \end{array} \rangle

\langle (\text{half_idle}, l), \begin{array}{c} \text{we} = 1 \\ \text{se} = 1 \\ \text{te} = 0 \end{array} \rangle

\langle (\text{half_idle}, l), \begin{array}{c} \text{we} = 1 \\ \text{se} = 1 \\ \text{te} = 0 \end{array} \rangle
Example: Computation Paths vs. Computation Graph

(or: Transition Graph)

ChoicePanel:

User:

C50!

E1!

WATER!

SOFT!

TEA!

\[\langle \text{idle, l}, \begin{array}{c} \text{we} = 1 \\ \text{se} = 1 \\ \text{te} = 0 \end{array} \rangle \]

\[\langle \text{water_selected, l}, \begin{array}{c} \text{we} = 1 \\ \text{se} = 1 \\ \text{te} = 0 \end{array} \rangle \]

\[\langle \text{request_sent, l}, \begin{array}{c} \text{we} = 1 \\ \text{se} = 1 \\ \text{te} = 0 \end{array} \rangle \]

\[\langle \text{half_idle, l}, \begin{array}{c} \text{we} = 1 \\ \text{se} = 1 \\ \text{te} = 0 \end{array} \rangle \]

\[\langle \text{soft_selected, l}, \begin{array}{c} \text{we} = 1 \\ \text{se} = 1 \\ \text{te} = 0 \end{array} \rangle \]
Satisfaction of Uppaal Queries by Configurations

Exists finally:

- \(\langle \ell_0, \nu_0 \rangle \models \exists \Diamond \text{term} \)

 iff

 \[\exists \text{path } \xi \text{ of } \mathcal{N} \text{ starting in } \langle \ell_0, \nu_0 \rangle \exists i \in \mathbb{N}_0 \cdot \xi^i \models \text{term} \]

 “some configuration satisfying term is reachable”

Example: \(\langle \ell_0, \nu_0 \rangle \models \exists \Diamond \varphi \)
Satisfaction of Uppaal Queries by Configurations

Exists globally:

- \(\langle \vec{\ell}_0, \nu_0 \rangle \models \exists \Box \text{term} \)

iff

\(\exists \text{path } \xi \text{ of } N \text{ starting in } \langle \vec{\ell}_0, \nu_0 \rangle \)

\(\forall i \in \mathbb{N}_0 \bullet \xi^i \models \text{term} \)

“on some computation path, all configurations satisfy term”

Example: \(\langle \vec{\ell}_0, \nu_0 \rangle \models \exists \Box \varphi \)
Satisfaction of Uppaal Queries by Configurations

- **Always globally:**

 \[
 \langle \vec{\ell}_0, \nu_0 \rangle \models \forall \Box \text{term} \quad \iff \quad \langle \vec{\ell}_0, \nu_0 \rangle \not\models \exists \Diamond \neg \text{term}
 \]

 “not (some configuration satisfying \(\neg \text{term}\) is reachable)"

 or: “all reachable configurations satisfy \(\text{term}\)”

- **Always finally:**

 \[
 \langle \vec{\ell}_0, \nu_0 \rangle \models \forall \Diamond \text{term} \quad \iff \quad \langle \vec{\ell}_0, \nu_0 \rangle \not\models \exists \Box \neg \text{term}
 \]

 “not (on some computation path, all configurations satisfy \(\neg \text{term}\))”

 or: “on all computation paths, there is a configuration satisfying \(\text{term}\)”
Satisfaction of Uppaal Queries by Configurations

Leads to:

- \(\langle \vec{l}_0, \nu_0 \rangle \models \text{term}_1 \rightarrow \text{term}_2 \)
 iff
 \(\forall \) path \(\xi \) of \(\mathcal{N} \) starting in \(\langle \vec{l}_0, \nu_0 \rangle \)
 \(\forall i \in \mathbb{N}_0 \)
 \(\xi^i \models \text{term}_1 \rightarrow \xi^i \models \forall \diamond \text{term}_2 \)

“on all paths, from each configuration satisfying \(\text{term}_1 \), a configuration satifying \(\text{term}_2 \) is reachable” (response pattern)

Example: \(\langle \vec{l}_0, \nu_0 \rangle \models \varphi_1 \rightarrow \varphi_2 \)
Definition. Let $\mathcal{N} = C(A_1, \ldots, A_n)$ be a network and F a query.

(i) We say \mathcal{N} satisfies F, denoted by $\mathcal{N} \models F$, if and only if $C_{ini} \models F$.

(ii) The model-checking problem for \mathcal{N} and F is to decide whether $(\mathcal{N}, F) \in \models$.

Proposition.
The model-checking problem for communicating finite automata is decidable.
Content

- Communicating Finite Automata (CFA)
 - concrete and abstract syntax,
 - networks of CFA,
 - operational semantics.

- Transition Sequences

- Deadlock, Reachability

- Uppaal
 - tool demo (simulator),
 - query language,
 - CFA model-checking.

- CFA at Work
 - drive to configuration, scenarios, invariants
 - tool demo (verifier).

- Uppaal Architecture
CFA and Queries at Work
Model Architecture — Who Talks What to Whom

- **Shared variables:**
 - `bool water_enabled, soft_enabled, tea_enabled;`
 - `int w = 3, s = 3, t = 3;`

- **Note:** Our model does not use scopes ("information hiding") for channels. That is, ‘Service’ could send ‘WATER’ if the modeler wanted to.
• **Question**: Is (at all) possible to have no water in the vending machine model? (Otherwise, the design is definitely broken.)

• **Approach**: Check whether a configuration satisfying

\[w = 0 \]

is reachable, i.e. check

\[\mathcal{N}_{VM} \models \exists \Diamond w = 0. \]

for the vending machine model \(\mathcal{N}_{VM} \).
Question: Is the following existential LSC satisfied by the model? (Otherwise, the design is definitely broken.)

Approach: Use the following newly created CFA ‘Scenario’

Instead of **User** and check whether location `end_of_scenario` is reachable, i.e. check

\[
\mathcal{N}_{VM}' \models \exists \Diamond \text{Scenario.end_of_scenario}.
\]

for the modified vending machine model \(\mathcal{N}_{VM}' \).
Design Verification: Invariants

- **Question**: Is it the case that the “tea” button is **only** enabled if there is €1.50 in the machine? (Otherwise, the design is broken.)

- **Approach**: Check whether the implication

\[
tea_enabled \implies \text{CoinValidator}_\text{have}_c150
\]

holds in all reachable configurations, i.e. check

\[
\mathcal{N}_{VM} \models \forall \Box tea_enabled \implies \text{CoinValidator}_\text{have}_c150
\]

for the vending machine model \mathcal{N}_{VM}.
Question: Is the “tea” button ever enabled?
(Otherwise, the considered invariant

$$\text{tea_enabled} \implies \text{CoinValidator_have_c150}$$

holds vacuously.)

Approach: Check whether a configuration satisfying $\text{water_enabled} = 1$ is reachable.

Exactly like we did with $w = 0$ earlier.
Question: Is it the case that, if there is money in the machine and water in stock, that the “water” button is enabled?

Approach: Check

\[\mathcal{N}_{VM} \models \forall \square (\text{CoinValidator} \cdot \text{have}_c\text{50} \lor \text{CoinValidator} \cdot \text{have}_c\text{100} \lor \text{CoinValidator} \cdot \text{have}_c\text{150}) \]

...imply \(\text{water}_\text{enabled} \).
Recall: Universal LSC Example

LSC: buy water
AC: true
AM: invariant I: strict

User

CoinValidator

ChoicePanel

Dispenser

\[\neg (C50 \lor E1 \lor p\text{SOFT} \lor p\text{TEA} \lor p\text{FILLUP}) \]

\[\neg (d\text{Soft} \lor d\text{TEA}) \]

\[\text{water_in_stock} \]

\[p\text{WATER} \]

\[d\text{WATER} \]

\[\text{OK} \]
Content

- Communicating Finite Automata (CFA)
 - concrete and abstract syntax,
 - networks of CFA,
 - operational semantics.

- Transition Sequences

- Deadlock, Reachability

- Uppaal
 - tool demo (simulator),
 - query language,
 - CFA model-checking.

- CFA at Work
 - drive to configuration, scenarios, invariants
 - tool demo (verifier).

- Uppaal Architecture
Uppaal Architecture
Uppaal Architecture
Tell Them What You’ve Told Them…

- A network of communicating finite automata
 - describes a labelled transition system,
 - can be used to model software behaviour.

- The Uppaal Query Language can be used to
 - formalize reachability (∃◊ CF, ∀□ CF, …) and
 - leadsto (CF₁ → CF₂) properties.

- Since the model-checking problem of CFA is decidable,
 - there are tools which automatically check
 whether a network of CFA satisfies a given query.

- Use model-checking, e.g., to
 - obtain a computation path to a certain configuration
 (drive-to-configuration),
 - check whether a scenario is possible,
 - check whether an invariant is satisfied.
 (If not, analyse the design further using the obtained counter-example).
References
References

