Topic Area Code Quality Assurance: Content

- **Introduction and Vocabulary**
 - Test case, test suite, test execution.
 - Positive and negative outcomes.

- **Limits of Software Testing**
 - Glass-Box Testing
 - Statement-, branch-, term-coverage.

- **Other Approaches**
 - Model-based testing,
 - Runtime verification.

- **Program Verification**
 - Partial and total correctness,
 - Proof System PD.

- **Review**
Content

- Formal Program Verification
 - Deterministic Programs
 - Syntax
 - Semantics
 - Termination, Divergence
 - Correctness of deterministic programs
 - partial correctness
 - total correctness
 - Proof System PD
- The Verifier for Concurrent C
Deterministic Programs

Syntax:
\[S ::= \text{skip} \mid u := t \mid S_1; S_2 \mid \text{if} B \text{ then } S_1 \text{ else } S_2 \text{ fl } \mid \text{while} B \text{ do } S_1 \text{ od} \]
where \(u \in V \) is a variable, \(t \) is a type-compatible expression, \(B \) is a Boolean expression.

Semantics: (is induced by the following transition relation) \(- \sigma : V \rightarrow D(V)\)

\[(\text{skip}, \sigma) \rightarrow (E, \sigma) \]
\[(u := t, \sigma) \rightarrow (E, \sigma[u \leftarrow \sigma(t)]) \]
\[(S_1, \sigma) \rightarrow (S_2, \tau) \]
\[(S_1; S, \sigma) \rightarrow (S_2; S, \tau) \]
\[(\text{if} B \text{ then } S_1 \text{ else } S_2, \sigma) \rightarrow (S_1, \sigma), \text{if } \sigma \models B, \]
\[(\text{while} B \text{ do } S, \sigma) \rightarrow (S; \text{while } B \text{ do } S, \sigma), \text{if } \sigma \not\models B, \]
\[(E, \sigma) \rightarrow (E, \sigma), \text{if } \sigma \not\models B, \]
\[E \text{ denotes the } \text{empty program}; \text{ define } E; S \equiv S; E \equiv S. \]

Note: the first component of \((S, \sigma) \) is a program (structural operational semantics (SOS)).
Consider program

\[S \equiv a[0] := 1; a[1] := 0; \text{while } a[x] \neq 0 \text{ do } x := x + 1 \text{ od} \]

and a state \(\sigma \) with \(\sigma \models x = 0 \).

\[\langle S, \sigma \rangle \xrightarrow{\text{(i),(ii)}} \langle a[1] := 0; \text{while } a[x] \neq 0 \text{ do } x := x + 1 \text{ od}, \sigma[a[0] := 1] \rangle \]

\[\langle \text{while } a[x] \neq 0 \text{ do } x := x + 1 \text{ od}, \sigma' \rangle \xrightarrow{\text{(vi)}} \langle x := x + 1; \text{while } a[x] \neq 0 \text{ do } x := x + 1 \text{ od}, \sigma' \rangle \]

\[\langle \text{while } a[x] \neq 0 \text{ do } x := x + 1 \text{ od}, \sigma'[x := 1] \rangle \]

where \(\sigma' = \sigma[a[0] := 1][a[1] := 0] \).

Another Example

Consider program

\[S_1 \equiv y := x; \ y := (x - 1) \cdot x + y \]

and a state \(\sigma \) with \(\sigma \models x = 3 \).

\[\langle S_1, \sigma \rangle \xrightarrow{\text{(i),(ii)}} \langle y := (x - 1) \cdot x + y, \{x \mapsto 3, y \mapsto 3\} \rangle \]

\[\langle E, \{x \mapsto 3, y \mapsto 9\} \rangle \]

Consider program \(S_3 \equiv y := x; \ y := (x - 1) \cdot x + y; \text{while } 1 \text{ do skip od.} \)

\[\langle S_3, \sigma \rangle \xrightarrow{\text{(i),(ii)}} \langle y := (x - 1) \cdot x + y; \text{while } 1 \text{ do skip od}, \{x \mapsto 3, y \mapsto 3\} \rangle \]

\[\langle \text{while } 1 \text{ do skip od}, \{x \mapsto 3, y \mapsto 9\} \rangle \]

\[\langle \text{while } 1 \text{ do skip od}, \{x \mapsto 3, y \mapsto 9\} \rangle \]

\[\ldots \]
Definition. Let \(S \) be a deterministic program.

(i) A \textbf{transition sequence} of \(S \) (starting in \(\sigma \)) is a finite or infinite sequence
\[
\langle S, \sigma \rangle = \langle S_0, \sigma_0 \rangle \rightarrow \langle S_1, \sigma_1 \rangle \rightarrow \ldots
\]
(that is, \(\langle S_i, \sigma_i \rangle \) and \(\langle S_{i+1}, \sigma_{i+1} \rangle \) are in transition relation for all \(i \)).

(ii) A \textbf{computation (path)} of \(S \) (starting in \(\sigma \)) is a maximal transition sequence of \(S \) (starting in \(\sigma \)), i.e. infinite or not extendible.

(iii) A computation of \(S \) is said to
\begin{itemize}
 \item[a)] terminate in \(\tau \) if and only if it is finite and ends with \(\langle E, \tau \rangle \),
 \item[b)] diverge if and only if it is infinite.
\end{itemize}

\(S \) can diverge from \(\sigma \) if and only if a diverging computation starts in \(\sigma \).

(iv) We use \(\rightarrow^* \) to denote the transitive, reflexive closure of \(\rightarrow \).

Lemma. For each deterministic program \(S \) and each state \(\sigma \), there is exactly one computation of \(S \) which starts in \(\sigma \).

Input/Output Semantics of Deterministic Programs

Definition. Let \(S \) be a deterministic program.

(i) The \textbf{semantics of partial correctness} is the function
\[
\mathcal{M}_{\text{P}}[S] : \Sigma \rightarrow 2^\Sigma
\]
with
\[
\mathcal{M}_{\text{P}}[S](\sigma) = \{ \tau | \langle S, \sigma \rangle \rightarrow^* \langle E, \tau \rangle \}. \text{ finitely many } \tau \text{ exist}.
\]

(ii) The \textbf{semantics of total correctness} is the function
\[
\mathcal{M}_{\text{T}}[S] : \Sigma \rightarrow 2^\Sigma \cup \{ \infty \}
\]
with
\[
\mathcal{M}_{\text{T}}[S](\sigma) = \mathcal{M}_{\text{P}}[S](\sigma) \cup \{ \infty | S \text{ can diverge from } \sigma \}. \text{ } \infty \text{ is an error state representing divergence.}
\]

Note: \(\mathcal{M}_{\text{T}}[S](\sigma) \) has exactly one element, \(\mathcal{M}_{\text{P}}[S](\sigma) \) at most one.

Example: \(\mathcal{M}[S_1](\sigma) = \mathcal{M}_{\text{T}}[S_1](\sigma) = \{ \tau | \tau(x) = \sigma(x) \land \tau(y) = \sigma(x)^2 \}, \quad \sigma \in \Sigma. \)

(Recall: \(S_1 \equiv y := x; y := (x - 1) \cdot x + y \))
Content

- Formal Program Verification
 - Deterministic Programs
 - Syntax
 - Semantics
 - Termination, Divergence
 - Correctness of deterministic programs
 - partial correctness,
 - total correctness.
 - Proof System PD
- The Verifier for Concurrent C

Correctness of While-Programs
Definition. Let S be a program over variables V, and p and q Boolean expressions over V.

(i) The correctness formula

$$\{p\} S \{q\}$$

(hoare triple)

holds in the sense of partial correctness,
denoted by $\models \{p\} S \{q\}$, if and only if

$$M[S](\llbracket p \rrbracket) \subseteq \llbracket q \rrbracket.$$

We say S is partially correct wrt p and q.

(ii) A correctness formula

$$\{p\} S \{q\}$$

holds in the sense of total correctness,
denoted by $\models_{\text{tot}} \{p\} S \{q\}$, if and only if

$$M_{\text{tot}}[S](\llbracket p \rrbracket) \subseteq \llbracket q \rrbracket.$$

We say S is totally correct wrt p and q.

Example: Computing squares (of numbers $0, \ldots, 27$)

- Pre-condition: $p \equiv 0 \leq x \leq 27$.
- Post-condition: $q \equiv y = x^2$.

Program S_1:

```
int y = x;
y = (x - 1) * x + y;
```

$\models^? \{p\} S_1 \{q\}$ ✓

$\models^?_{\text{tot}} \{p\} S_1 \{q\}$ ✓

Program S_2:

```
int y = x;
y = (x - 1) * x + y;
while (1);
```

$\models^? \{p\} S_2 \{q\}$ ✓

$\models^?_{\text{tot}} \{p\} S_2 \{q\}$ ✗

Program S_3:

```
int y = x;
int z; // uninitialised
y = ((x - 1) * x + y) * z;
```

$\models^? \{p\} S_3 \{q\}$ ✗

$\models^?_{\text{tot}} \{p\} S_3 \{q\}$ ✗

Program S_4:

```
int x = read_input();
y = x * (x - 1) * x;
```

$\models^? \{p\} S_4 \{q\}$ ✓

$\models^?_{\text{tot}} \{p\} S_4 \{q\}$ ✗
Example: Correctness

- By the example, we have shown
 \[\models \{ x = 0 \} S \{ x = 1 \} \]
 and
 \[\models_{\text{tot}} \{ x = 0 \} S \{ x = 1 \} \]
 (because we only assumed \(\sigma \models x = 0 \) for the example, which is exactly the precondition.)

- We have also shown (= proved (!)):
 \[\models \{ x = 0 \} S \{ x = 1 \land a[x] = 0 \} \]

 - The correctness formula \(\{ x = 2 \} S \{ \text{true} \} \) does not hold for \(S \). (In the sense of total correctness.)
 (For example, if \(\sigma \models a[i] \neq 0 \) for all \(i > 2 \).)
 - In the sense of partial correctness, \(\{ x = 2 \land \forall i \geq 2 \cdot a[i] = 1 \} S \{ \text{false} \} \) also holds.

Content

- Formal Program Verification
 - Deterministic Programs
 - Syntax
 - Semantics
 - Termination, Divergence
 - Correctness of deterministic programs
 - partial correctness,
 - total correctness.
 - Proof System PD
- The Verifier for Concurrent C
Proof-System PD

Proof-System PD (for sequential, deterministic programs)

Axiom 1: Skip-Statement

\[
\{p\} \text{skip} \{p\}
\]

Axiom 2: Assignment

\[
\{p[u := t]\} u := t \{p\}
\]

Rule 3: Sequential Composition

\[
\frac{\{p\} S_1 \{r\}, \{r\} S_2 \{q\}}{\{p\} S_1; S_2 \{q\}}
\]

Rule 4: Conditional Statement

\[
\frac{\{p \land B\} S_1 \{q\}, \{p \land \neg B\} S_2 \{q\}}{\{p\} \text{if } B \text{ then } S_1 \text{ else } S_2 \text{ fi } \{q\}}
\]

Rule 5: While-Loop

\[
\frac{\{p \land B\} S \{p\}}{\{p\} \text{while } B \text{ do } S \text{ od } \{p \land \neg B\}}
\]

Rule 6: Consequence

\[
\frac{p \rightarrow p_1, \{p_1\} S \{q_1\}, q_1 \rightarrow q}{\{p\} S \{q\}}
\]

Theorem. PD is correct ("sound") and (relative) complete for partial correctness of deterministic programs, i.e. \(\vdash_{PD} \{p\} S \{q\}\) if and only if \(\models \{p\} S \{q\}\).
Example Proof

\[DIV \equiv a := 0; \ b := x; \text{ while } b \geq y \text{ do } b := b - y; \ a := a + 1 \text{ od} \]

(The first (textually represented) program that has been formally verified (Hoare, 1969).

We can prove \(\vdash \{ x \geq 0 \land y \geq 0 \} \) \(DIV \{ a \cdot y + b = x \land b < y \} \)
by showing \(\vdash_{PD} \{ x \geq 0 \land y \geq 0 \} \) \(DIV \{ a \cdot y + b = x \land b < y \} \), i.e., derivability in PD:

\begin{align*}
\text{(1)} & \quad \vdash_{PD} \{ x \geq 0 \land y \geq 0 \} \text{ while } b \geq y \text{ do } b := b - y; \ a := a + 1 \text{ od} \{ P \}\text{ (R3)} \\
\text{(2)} & \quad \vdash_{PD} \{ P \land (b \geq y) \} \text{ while } b \geq y \text{ do } b := b - y; \ a := a + 1 \text{ od} \{ P \}\text{ (R4)} \\
\text{(3)} & \quad \vdash_{PD} \{ P \land (b \geq y) \} \text{ while } b \geq y \text{ do } b := b - y; \ a := a + 1 \text{ od} \{ P \}\text{ (R5)}
\end{align*}

\(\vdash_{PD} \{ x \geq 0 \land y \geq 0 \} \) \(a := 0; \ b := x \{ P \} \text{ (R1)} \)

\(\vdash_{PD} \{ P \land b \geq y \} \) \(b := b - y; \ a := a + 1 \{ P \} \text{ (R2)} \)

\(\vdash_{PD} \{ P \land \neg (b \geq y) \} \rightarrow a \cdot y + b = x \land b < y \text{ (R6)} \)

As loop invariant, we choose (creative act!)

\[P \equiv a \cdot y + b = x \land b \geq 0 \]
Proof of (1)

• (1) claims:
\[\vdash_{PD} \{ x \geq 0 \land y \geq 0 \} a := 0; b := x \{ P \} \]
where \(P \equiv a \cdot y + b = x \land b \geq 0 \).

\[\vdash_{PD} \{ 0 \cdot y + x = x \land x \geq 0 \} a := 0 \{ a \cdot y + x = x \land x \geq 0 \} \]
by (A2).

\[\vdash_{PD} \{ a \cdot y + x = x \land x \geq 0 \} b := x \{ a \cdot y + b = x \land b \geq 0 \} \]
by (A2).

\[\vdash_{PD} \{ 0 \cdot y + x = x \land x \geq 0 \} a := 0; b := x \{ P \} \]
by (R3).

using \(x \geq 0 \land y \geq 0 \rightarrow 0 \cdot y + x = x \land x \geq 0 \) and \(P \rightarrow P \), we obtain
\[\vdash_{PD} \{ x \geq 0 \land y \geq 0 \} a := 0; b := x \{ P \} \]
by (R6).
The rule ‘Assignment’ uses (syntactical) substitution: \(\{ p[u := t] \} u := t \{ p \} \)

(In formula \(p \), replace all (free) occurrences of (program or logical) variable \(u \) by term \(t \).)

Defined as usual, only indexed and bound variables need to be treated specially:

Expressions:
- plain variable \(x \): \(x[u := t] \equiv \begin{cases} t & \text{if } x = u \\ x & \text{otherwise} \end{cases} \)
- constant \(c \): \(c[u := t] \equiv c \).
- constant \(op \), terms \(s_i \):
 \(op(s_1, \ldots, s_n)[u := t] \equiv op(s_1[u := t], \ldots, s_n[u := t]) \).
- conditional expression:
 \((B ? s_1 : s_2)[u := t] \equiv (B[u := t] ? s_1[u := t] : s_2[u := t]) \)
- indexed variable, \(u \) plain or \(u \equiv b[t_1, \ldots, t_m] \) and \(a \neq b \):
 \((a[s_1, \ldots, s_n])[u := t] \equiv a[s_1[u := t], \ldots, s_n[u := t]] \)
- indexed variable, \(u \equiv a[t_1, \ldots, t_m] \):
 \(a[s_1, \ldots, s_n)[u := t] \equiv (\land_{i=1}^n s_i[u := t] = t_i ? t \cdot a[s_1[u := t], \ldots, s_n[u := t]]) \)

Formulae:
- boolean expression \(p \equiv s \):
 \(p[u := t] \equiv s[u := t] \)
- negation:
 \(\neg q[u := t] \equiv \neg(q[u := t]) \)
- conjunction etc.:
 \(q \land r)[u := t] \equiv q[u := t] \land r[u := t] \)
- quantifier:
 \(\forall x : q[u := t] \equiv \forall y : q[x := y][u := t] \)
 \(y \) fresh (not in \(q, t, u \), same type as \(x \)).
In the following, we show

(1) ⊢_{P} \{ x \geq 0 \land y \geq 0 \} \ a := 0; \ b := x \{ P \},

(2) ⊢_{P} \{ P \land b \geq y \} \ b := b - y; \ a := a + 1 \{ P \},

(3) \models P \land \neg(b \geq y) \to a \cdot y + b = x \land b < y.

As loop invariant, we choose (creative act!):

\[P = a \cdot y + b = x \land b \geq 0 \]

\[(x \geq 0 \land y \geq 0) a := 0; \ b := x \{ P \} \]

\[(p \land b \geq y) \ b := b - y; \ a := a + 1 \{ P \} \]

\[(x \geq 0 \land y \geq 0) a := 0; \ b := x \{ P \} \]

\[(a + 1) \cdot y + (b - y) = x \land (b - y) \geq 0 \] by (A2),

\[(a + 1) \cdot y + b = x \land b \geq 0 \] by (A2),

\[(a + 1) \cdot y + (b - y) = x \land (b - y) \geq 0 \] by (R3),

\[\text{using } P \land b \geq y \to (a + 1) \cdot y + (b - y) = x \land (b - y) \geq 0 \text{ and } P \to P' \text{ we obtain} \]

\[\models \quad P \land b \geq y \ b := b - y; \ a := a + 1 \{ P \} \]

by (R6).
Example Proof Cont’d

In the following, we show

\(1\) \(\vdash_{PD} \{ x \geq 0 \land y \geq 0 \} a := 0; b := x \{ P \}\),

\(2\) \(\vdash_{PD} \{ P \land b \geq y \} b := b - y; \ a := a + 1 \{ P \}\),

\(3\) \(\vdash P \land \neg(b \geq y) \rightarrow a \cdot y + b = x \land b < y\).

As loop invariant, we choose (creative act!):

\[P \equiv a \cdot y + b = x \land b \geq 0 \]

Proof of \(3\)

\(3\) claims

\[\vdash P \land \neg(b \geq y) \rightarrow a \cdot y + b = x \land b < y. \]

where \(P \equiv a \cdot y + b = x \land b \geq 0. \)

Proof: easy.
We have shown:

(1) \(\vdash_{PD} \{ x \geq 0 \land y \geq 0 \} \ a := 0; \ b := x \{ P \} \)

(2) \(\vdash_{PD} \{ P \land b \geq y \} \ b := b - y; \ a := a + 1 \{ P \} \)

(3) \(\models P \land \neg(b \geq y) \to a \cdot y + b = x \land b < y \)

and

\[
\begin{align*}
(P \land y \geq 0) \ a := 0; \ b := x \{ P \} & \\
(P \land (b \geq y)) \ b := b - y; \ a := a + 1 \{ P \} & \\
\end{align*}
\]

thus

\[
\vdash_{PD} \{ x \geq 0 \land y \geq 0 \} \ a := 0; \ b := x; \ while \ b \geq y \ do \ b := b - y; \ a := a + 1 \ od \{ a \cdot y + b = x \land b < y \}
\]

\[\equiv \text{DIV}\]

and thus (since PD is sound) DIV is partially correct wrt.

- pre-condition: \(x \geq 0 \land y \geq 0 \)
- post-condition: \(a \cdot y + b = x \land b < y \)

IOW: whenever DIV is called with \(x \) and \(y \) such that \(x \geq 0 \land y \geq 0 \), then (if DIV terminates) \(a \cdot y + b = x \land b < y \) will hold.

Once Again

- \(P \equiv a \cdot y + b = x \land b \geq 0 \)

\[
\begin{align*}
\{ x \geq 0 \land y \geq 0 \} & \\
\{ 0 \cdot y + x = x \land x \geq 0 \} & \\
\{ a := 0; \} & \\
\{ a \cdot y + x = x \land x \geq 0 \} & \\
\{ b := x; \} & \\
\{ a \cdot y + b = x \land b \geq 0 \} & \\
\{ P \} & \\
\end{align*}
\]

while \(b \geq y \)

\[
\begin{align*}
\{ P \land b \geq y \} & \\
\{ (a + 1) \cdot y + (b - y) = x \land (b - y) \geq 0 \} & \\
\{ b := b - y; \} & \\
\{ (a + 1) \cdot y + b = x \land b \geq 0 \} & \\
\{ a := a + 1 \} & \\
\{ a \cdot y + b = x \land b \geq 0 \} & \\
\{ P \} & \\
\end{align*}
\]

\(\text{od} \)

\[
\begin{align*}
\{ P \land \neg(b \geq y) \} & \\
\{ a \cdot y + b = x \land b < y \} & \\
\end{align*}
\]

\[\text{R5} \]

\[\text{R6} \]

\[\text{R1} \]

\[\text{R2} \]

\[\text{R3} \]

\[\text{R4} \]

\[\text{R0} \]

\[\text{R1} \]

\[\text{R2} \]

\[\text{R3} \]

\[\text{R4} \]

\[\text{R5} \]

\[\text{R6} \]

\[\text{R0} \]
Content

- Formal Program Verification
 - Deterministic Programs
 - Syntax
 - Semantics
 - Termination, Divergence
 - Correctness of deterministic programs
 - partial correctness
 - total correctness
 - Proof System PD
- The Verifier for Concurrent C
Assertions

- Extend the **syntax** of deterministic programs by

\[S := \cdots | \text{assert}(B) \]

- and the **semantics** by rule

\[\langle \text{assert}(B), \sigma \rangle \rightarrow \langle E, \sigma \rangle \text{ if } \sigma \models B. \]

(If the asserted boolean expression \(B \) does not hold in state \(\sigma \), the empty program is not reached; otherwise the assertion remains in the first component: abnormal program termination.)

Extend PD by axiom:

\[(A7) \{ p \} \text{ assert}(p) \{ p \} \]

- That is, if \(p \) holds **before** the assertion, then we can **continue** with the derivation in PD.

 If \(p \) does not hold, we “**get stuck**” (and cannot complete the derivation).

- So we cannot **derive** \(\{ \text{true} \} \; x := 0; \; \text{assert}(x = 27) \{ \text{true} \} \) in PD.
Modular Reasoning

We can add another rule for calls of functions $f : F$ (simplest case: only global variables):

\[
\begin{array}{c}
\{ p \} F \{ q \} \\
\{ p \} f() \{ q \}
\end{array}
\]

"If we have $\vdash \{ p \} F \{ q \}$ for the implementation of function f, then if f is called in a state satisfying p, the state after return of f will satisfy q.

p is called **pre-condition** and q is called **post-condition** of f.

Example: if we have

- $\{ \text{true} \} \text{read_number} \{ 0 \leq \text{result} < 10^8 \}$
- $\{ 0 \leq x \land 0 \leq y \} \text{add} \{ (\text{old}(x) + \text{old}(y) < 10^8 \land \text{result} = \text{old}(x) + \text{old}(y)) \lor \text{result} < 0 \}$
- $\{ \text{true} \} \text{display} \{ (0 \leq \text{old}(\text{sum}) < 10^8 \implies \text{"old}(\text{sum})\text{"}) \land (\text{old}(\text{sum}) < 0 \implies \text{"-E-"}) \}$

we may be able to prove our pocket calculator correct.
Return Values and Old Values

- For modular reasoning, it's often useful to refer in the post-condition to
 - the return value as result,
 - the values of variable x at calling time as $old(x)$.

- Can be defined using auxiliary variables:
 - Transform function
 \[
 T f() \{ \ldots ; \text{return } expr; \}
 \]
 (over variables $V = \{ v_1, \ldots, v_n \}$; where result, $v^\text{old} \notin V$) into
 \[
 T f() \{
 v^\text{old} := v_1; \ldots; v^\text{old} := v_n;
 \ldots ;
 \text{result} := expr;
 \text{return } \text{result};
 \}
 \]
 over $V' = V \cup \{ v^\text{old} | v \in V \} \cup \{ \text{result} \}$.
 - Then $old(x)$ is just an abbreviation for x^old.

The Verifier for Concurrent C
• The Verifier for Concurrent C (VCC) basically implements Hoare-style reasoning.

• Special syntax:
 • `#include <vcc.h>`
 • `(requires p)` — **pre-condition**, *p* is (basically) a C expression
 • `(ensures q)` — **post-condition**, *q* is (basically) a C expression
 • `(invariant expr)` — **loop invariant**, *expr* is (basically) a C expression
 • `(assert p)` — **intermediate invariant**, *p* is (basically) a C expression
 • `(writes &v)` — VCC considers concurrent C programs; we need to declare for each procedure which global variables it is allowed to write to (also checked by VCC)

• Special expressions:
 • `thread_local(&v)` — no other thread writes to variable *v* (in pre-conditions)
 • `old(v)` — the value of *v* when procedure was called (useful for post-conditions)
 • `result` — return value of procedure (useful for post-conditions)

VCC Syntax Example

```c
#include <vcc.h>

int a, b;

void div(int x, int y)
  _(requires x >= 0 && y >= 0)
  _(ensures a * y + b == x && b < y)
  _(writes &a)
  _(writes &b)
{
  a = 0;
  b = x;
  while (b >= y)
    _(invariant a * y + b == x && b >= 0)
    {
      b = b - y;
      a = a + 1;
    }
}
```

\[
DIV \equiv a := 0;\ b := x;\ \textbf{while} b \geq y\ \textbf{do} b := b - y;\ a := a + 1 \ \textbf{od}
\{x \geq 0 \land y \geq 0\} \textbf{DIV} \{x \geq 0 \land y \geq 0\}
\]
Interpretation of Results

- VCC result: "verification succeeded"
 - We can only conclude that the tool — under its interpretation of the C-standard, under its platform assumptions (32-bit), etc. — claims that there is a proof for $\vdash \{p\} \text{DIV} \{q\}$.
 - May be due to an error in the tool! (That's a false negative then.)
 Yet we can ask for a printout of the proof and check it manually (hardly possible in practice) or with other tools like interactive theorem provers.
 - Note: $\vdash \{\text{false}\} f \{q\}$ always holds.
 That is, a mistake in writing down the pre-condition can make errors in the program go undetected!

- VCC result: "verification failed"
 - May be a false positive (wrt. the goal of finding errors).
 The tool does not provide counter-examples in the form of a computation path, it (only) gives hints on input values satisfying p and causing a violation of q.
 - \rightarrow try to construct a (true) counter-example from the hints.
 or: make loop-invariant(s) (or pre-condition p) stronger, and try again.

- Other case: "timeout" etc. — completely inconclusive outcome.
VCC Features

- For the exercises, we use VCC only for sequential, single-thread programs.
- VCC checks a number of implicit assertions:
 - no arithmetic overflow in expressions (according to C-standard),
 - array-out-of-bounds access,
 - NULL-pointer dereference,
 - and many more.
- Verification does not always succeed:
 - The backend SMT-solver may not be able to discharge proof-obligations (in particular non-linear multiplication and division are challenging);
 - In many cases, we need to provide loop invariants manually.
- VCC also supports:
 - concurrency: different threads may write to shared global variables; VCC can check whether concurrent access to shared variables is properly managed;
 - data structure invariants: we may declare invariants that have to hold for, e.g., records (e.g. the length field \(i \) is always equal to the length of the string field \(str \)); those invariants may temporarily be violated when updating the data structure.
 - and much more.

Tell Them What You’ve Told Them...
References
