Software Engineering
Errata for the Course Slides

July 26, 2018

Contents

Lecture 4: Software Project Management (NEW) 1
Slide 35, ‘Building Blocks Can Be Arbitrarily Complicated’ 1

Lecture 9: Scenarios & Use Cases 1
Slide 46, ‘Language of LSC Body: Example’ 1

Lecture 10: Live Sequence Charts & RE Wrap-Up 1
Slide 8, ‘Loop Condition’ 1
Slide 10, ‘Example’ and Slide 5, ‘Language of LSC Body: Example’ 1

Lecture 12: Structural Software Modelling II 2
Slide 28, ‘More Interesting Example’ 2

Lecture 4: Software Project Management (NEW)
Slide 35, ‘Building Blocks Can Be Arbitrarily Complicated’
The first item in the list to the right of the diagram needs to read:

If a test detected an error in \( M \),

Lecture 9: Scenarios & Use Cases
Slide 46, ‘Language of LSC Body: Example’
See Lecture 10, Slide 10 and 5 below.
Lecture 10: Live Sequence Charts & RE Wrap-Up

Slide 8, ‘Loop Condition’

The message aspect of the loop condition (first bullet point) needs to read

$$\psi^\text{Msg}(q) = \neg \bigvee_{1 \leq i \leq n, \psi \in \text{Msg}(q \setminus q)} \psi \land (\text{strict} \implies \bigwedge_{\psi \in E_i \cap \text{Msg}(L)} \neg \psi)$$

that is, in the non-strict case, the loop accepts all letters where *none* of the messages of any successor cut is sent or received.

Slide 10, ‘Example’ and Slide 5, ‘Language of LSC Body: Example’

The loop condition of state $q_6$ needs to read

$$\neg (G_{I_2,I_1}^{I_2,1} \lor G_{I_2,I_1}^{I_2,1})$$

and the progress condition from $q_4$ to $q_6$ needs to read

$$F_{I_2,I_3}^{I_2,1} \land \neg G_{I_2,I_1}^{I_2,1} \land \neg G_{I_2,I_1}^{I_2,1}$$

Lecture 12: Structural Software Modelling II

Slide 28, ‘More Interesting Example’

The studied Proto-OCL formula needs to read:

$$\forall c \in \text{allInstances}_C \cdot x(n(c)) \neq 27$$