Static Checking vs. Theorem Proving

Goal:
- finds bugs at compile-time,
- proves that there is no violation.

Static Checking:
- e.g. Jahob and ESC/Java
- fully automatic (after annotation)
- can only verify simple properties

Theorem Proving:
- Needs lot of manual interaction
- complete calculus, can verify any property.
The Jahob Proof Language

Goals

- Improve the strength of the provable properties.
- Still fully automatic (after annotation).
- Have intermediate proof steps in annotation.

Paper:

We already know one command

\[\text{note } \ell : F \]

which abbreviates

\[\text{assert } \ell : F; \text{assume } \ell : F \]

- \(\ell \) is a label (or name) for the formula \(F \)
- When \(F \) cannot be proven Jahob tells that the check for \(\ell \) failed.
- \(\ell \) can also be used to tell the Jahob which formulas are relevant:

\[\text{assert } G \text{ from } \ell \]

Why is this rule correct?
Correctness of Proof Commands

An incorrect program must not be verified successfully.

If $P \rightarrow wp(S_1; \text{note } F; S_2, Q)$ then $P \rightarrow wp(S_1; S_2, Q)$

This is the case if we can proof that for all H

$$wp(\text{note } F, H) \rightarrow H$$

The note F command is correct:

$$wp(\text{note } F, H) \iff wp(\text{assert } F; \text{assume } F, H)$$

$$\iff F \land (F \rightarrow H)$$

$$\iff F \land H$$

$$\rightarrow H$$
Suppose you want to argue that F implies G by a implication chain

$$F \rightarrow F_1 \rightarrow F_2 \rightarrow G.$$

In Jahob there is a special syntax:

assuming F in

(note F_1
note F_2
note G)

This command adds the assumption

assume $F \rightarrow G$
General syntax of assuming

The general syntax is

```
assuming F in
  (∧
    note G)
```

This is an abbreviation for

```
( assume F
  ∧
  assert G
  assume false
  □
  assume F → G
  )
```

• : stands for arbitrary proof statements
Correctness of assuming statement

The implication rule is correct, provided the proof statements used in between are correct.

\[wp((\text{assume } F; \ p; \ \text{assert } G; \ \text{assume false} \ \Box \ \text{assume } F \rightarrow G, H)) \]
\[\equiv (F \rightarrow wp(p, G)) \land ((F \rightarrow G) \rightarrow H) \]
\[\rightarrow [\text{assuming that proof statements } p \text{ are correct}] \]
\[(F \rightarrow G) \land ((F \rightarrow G) \rightarrow H) \]
\[\rightarrow H \]
Case Splits

One can split cases, e.g.

\[\text{cases } x \geq 0, x < 0 \text{ for } \text{abs}(x) \geq 0 \]

\[\text{cases } F_1, \ldots, F_n \text{ for } G \]

is an abbreviation for

- assert \(F_1 \lor \cdots \lor F_n \);
- assert \(F_1 \to G; \ldots \)
- assert \(F_n \to G \);
- assume \(G \)

- Proof that \(F_1, \ldots, F_n \) are all possible cases.
- Proof for each case \(G \) separately.
- Assume \(G \) holds.
To prove a universal quantified formula the syntax is

```
pickAny x
:

note F
```

This is an abbreviation for

```
( havoc x
:

assert F[x]
assume false

assume ∀x. F[x]
)
```
Removing Universal Quantifiers

The inverse operation removes universal quantifiers:

\[\text{instantiate } \forall x. F[x] \text{ with } t \]

This is an abbreviation for

\[
\begin{align*}
\text{assert } \forall x. F[x] \\
\text{assume } F[t]
\end{align*}
\]
Proving Existential Quantifiers

To prove an existential quantified formula the syntax is

\[\text{witness } t \text{ for } \exists x. F[x] \]

This is an abbreviation for

\[\text{assert } F[t] \]
\[\text{assume } \exists x. F[x] \]
Removing Existential Quantifiers

The syntax is

\[
\text{pickWitness } x \text{ for } F[x]
\]

\[
: \quad \text{where } x \text{ does not occur in } G
\]

\[
\text{note } G
\]

This is an abbreviation for

\[
(\quad \text{assert } \exists x. F[x] \\
\text{havoc } x \\
\text{assume } F[x] \\
:\quad \quad \text{assert } G \\
\text{assume false} \\
\quad \square \\
\text{assume } G \\
) \]