Formal Methods for Java
Lecture 25: Proving a JML-Program with KeY

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

January 29, 2013
Theorem Prover

- Developed at University of Karlsruhe
- http://www.key-project.org/

- Theory specialized for Java(Card).
- Can generate proof-obligations from JML specification.
- Underlying theory: Sequent Calculus + Dynamic Logic
Case Study: Euklid’s Algorithm

Java code to compute gcd of non-negative numbers:

```java
public static int gcd(int a, int b) {
    while (a != 0 && b != 0) {
        if (a > b)
            a = a - b;
        else
            b = b - a;
    }
    return (a > b) ? a : b;
}
```

Let's prove it with KeY-System.
We first need a specification.

Definition (GCD)

Let a and b be natural numbers. A number d is the greatest common divisor (GCD) of a and b iff

1. $d | a$ and $d | b$
2. If $c | a$ and $c | b$, then $c | d$.

$d | a$ means d divides a.

$d | a : \iff \exists q. d \ast q = a$
JML Specification

The specification can be converted to JML:

```java
/*@ 
  @ requires a >= 0 && b >= 0;
  @ ensures \result >= 0;
  @ ensures (\exists int q; \result * q == a) &&
  @ (\exists int q; \result * q == b) &&
  @ (\forall int c;
      @ (\exists int q; c * q == a) && (\exists int q; c * q == b);
      @ (\exists int q; c * q == \result));
  @*/

public static int gcd(int a, int b)
```

Jochen Hoenicke (Software Engineering)
Formal Methods for Java
January 29, 2013
The rule while_invariant_with_variant_dec takes an invariant inv, a modifies set $\{m_1, \ldots, m_k\}$ and a variant v. The following cases must be proven.

- **Initially Valid:** $\implies inv \land v \geq 0$
- **Body Preserves Invariant:**
 $$\implies \{m_1 := x_1; \ldots; m_k := x_k\}(inv \land [\{b = COND; \}]b = true$$
 $$\rightarrow \langle BODY \rangle inv$$

- **Use Case:**
 $$\implies \{m_1 := x_1; \ldots; m_k := x_k\}(inv \land [\{b = COND; \}]b = false$$
 $$\rightarrow \langle \ldots \rangle \phi$$

- **Termination:**
 $$\implies \{m_1 := x_1; \ldots; m_k := x_k\}(inv \land v \geq 0 \land [\{b = COND; \}]b = true$$
 $$\rightarrow \{old := v\} \langle BODY \rangle v \leq old \land v \geq 0$$
Loop-Invariant

What is the loop invariant?

The algorithm changes a and b, but the gcd of a and b should stay the same.

In fact the set of common divisors of a and b never changes. This suggests the following invariant:

$$\forall d. (d | \text{old}(a) \land d | \text{old}(b) \leftrightarrow d | a \land d | b)$$

In JML this can be specified as:

```jml
/*@ loop_invariant a >= 0 && b >= 0 &&
  @ (\forall int d; true;
  @ (\exists int q; \text{old}(a) == q*d)
  @ && (\exists int q; \text{old}(b) == q*d)
  @ <==>(\exists int q; a == q*d) && (\exists int q; b == q*d)
  @ );
  @ assignable a, b;
  @ decreases a+b;
@*/
```