To prove a loop in key, one needs

- a loop invariant; it must be
 - initially valid,
 - inductive, i.e. hold after executing the body if it held before,
 - strong enough to prove the post-condition (use case).
- a modifies set; this must contain all variables changed by the loop body.
- a loop variant (or ranking function); it must be
 - non-negative,
 - strictly decreasing for every execution of the loop body.

The loop variant guarantees that the loop terminates.
The rule while_invariant_with_variant_dec

The rule while_invariant_with_variant_dec takes an invariant inv, a modifies set $\{m_1, \ldots, m_k\}$ and a variant v. The following cases must be proven.

- Initially Valid: $\implies inv \land v \geq 0$
- Body Preserves Invariant:

 $\implies \{m_1 := x_1 \parallel \ldots \parallel m_k := x_k\}(inv \land [\{b = COND; \}])b = \text{true} \implies \langle BODY \rangle inv$

- Use Case:

 $\implies \{m_1 := x_1 \parallel \ldots \parallel m_k := x_k\}(inv \land [\{b = COND; \}])b = \text{false} \implies \langle \ldots \rangle \phi$

- Termination:

 $\implies \{m_1 := x_1 \parallel \ldots \parallel m_k := x_k\}(inv \land v \geq 0 \land [\{b = COND; \}])b = \text{true} \implies \{old := v\}\langle BODY \rangle v \leq old \land v \geq 0$
Example: Multiplication

```java
/*@
  @ requires a >= 0 && b >= 0;
  @ ensures \result == a*b;
  @*/

public static int mul(int a, int b) {
    int sum = 0;
    while (b > 0) {
        sum = sum + a;
        b--;
    }
    return sum;
}
```
One possible loop invariant is \(\text{sum} + a \times b = a \times \text{old}(b) \):

```java
/*@ requires a >= 0 && b >= 0;
 @ ensures \result == a*b;
 @*/
public static int mul(int a, int b) {
    int sum = 0;
    /*@ loop_invariant sum + a*b == a*\old(b);
     @ modifies sum, b;
     @ decreases b;
     @*/
    while (b > 0) {
        sum = sum + a;
        b--;
    }
    return sum;
}
```

This is enough to prove it in KeY (Demo)
Algorithm to check if an array contains an element.

```java
/*@
   @ requires arr != null;
   @ ensures \result == (\exists int k; 0 <= k && k < arr.length;
       arr[k] == elem);
   @*/

public static boolean find(int[] arr, int elem) {
   for (int i = 0; i < arr.length; i++) {
      if (arr[i] == elem)
         return true;
   }
   return false;
}
```
What is the loop invariant?

```java
/*@
    @ loop_invariant !(\exists k; 0 <= k && k < i; arr[k] == elem);
    @ loop_invariant 0 <= i && i <= arr.length;
    @ modifies i;
    @ decreases arr.length - i;
    @*/
for (int i = 0; i < arr.length; i++) {
    if (arr[i] == elem)
        return true;
} return false;
```
Demo: Binary Search

```java
/*@ requires arr != null;
  @ requires (\forall int j,k; 0 <= j \&\& j <= k \&\& k < arr.length;
      @ arr[j] <= arr[k]); // array is sorted
  @ ensures \result == (\exists int k; 0 <= k \&\& k < arr.length;
      @ arr[k] == elem);
  @*/

boolean binary(int[] arr, int elem) {
    int lower = 0, upper = arr.length - 1;
    while (lower <= upper) {
        int mid = (lower + upper) / 2;
        assert lower <= mid && mid <= upper;
        if (arr[mid] == elem) {
            return true;
        } else if (arr[mid] > elem) {
            upper = mid - 1;
        } else {
            lower = mid + 1;
        }
    }

    return false;
}
```
/*@ requires arr != null && arr.length > 0;
 @ ensures (\forall int j,k; 0 <= j && j <= k && k < arr.length;
 arr[j] <= arr[k]); // array is sorted @*/

public static boolean bubblesort(int[] arr) {
 for (int i = arr.length-1; i > 0; i--) {
 for (int j = 0; j < i; j++) {
 if (a[j] > a[j+1]) {
 int t = a[j];
 a[j] = a[j+1];
 a[j+1] = t;
 }
 }
 }
}
Function **BubbleSort** sorts integer array arr

arr: unsorted sorted

by “bubbling” the largest element of the left unsorted region of arr toward the sorted region on the right.

Each iteration of the outer loop expands the sorted region by one cell.
Sample execution of BubbleSort

1. \(i = 1 \) and \(j = 2 \)
 - Swap 4 and 1
 - \(i = 2 \) and \(j = 3 \)
 - Swap 3 and 4
 - \(i = 3 \) and \(j = 4 \)
 - Swap 2 and 4
 - \(i = 4 \) and \(j = 5 \)
 - Swap 2 and 5