
J. Hoenicke
J. Christ

11.12.2012
Hand in solutions via email to

christj@informatik.uni-freiburg.de

until 18.12.2012 (only Java sources and
PDFs accepted)

Tutorials for “Formal methods for Java”
Exercise sheet 8

Exercise 1: Friendship
Consider an implementation of a list in Java that provides iterators to access the elements
of the list in the order in which they were inserted. The list can serve as backend to
multiple iterators that traverse the list independent of each other.
To ensure correctness of the traversal order, all Java library classes provide fast-fail itera-
tors. These iterators throw a ConcurrentModificationException if the collection tra-
versed by the iterator is changed while iterating over it. To implement this behavior, the
list keeps track of a modification counter and every iterator has a local copy of the value
of the modification counter. Every operation that modifies the content of the list first
increments the modification counter before changing the content of the list. If the value
of the copy in the iterator and the counter in the list differ, iteration is not guaranteed
to be correct anymore, and an exception is thrown.
To successfully apply this pattern, the modification counter may only be increased and
never decreased. The desired invariant for the list iterator is shown in the following listing.

class ListIter extends Iterator {
//@ghost JMLObjectSequence theContent;
List theList ;
int expectedModCount;
/∗@ invariant expectedModCount <= theList.modCount &&

expectedModCount == theList.modCount ==>
theContent.equals(theList .theContent);

@∗/
// Further fields and methods

}

(a) Describe using Slide 20 from Lecture 13 why the ownership model cannot be used
to realize this invariant in the given setting.

(b) State the two parties, their roles, the granted fields, and the update guards such
that the friendship model can be used to check this invariant. Modify the invariant
to comply to the friendship model.

christj@informatik.uni-freiburg.de

Exercise 2: Relational semantics of loop free guarded commands
In the lecture we defined the semantics of loop free guarded commands in terms of wea-
kest preconditions. Alternatively we can give a relational semantics that defines guarded
commands as relations on states:

[[x := e]] = { (s , s ′) | s ′ = s [x := s [[e]]] }
[[havoc(x)]] = { (s , s ′) | ∃v .s ′ = s [x := v] }
[[assert(G)]] = { (s , serr) | s 6|= G } ∪ { (s , s) | s |= G }
[[c1 � c2]] = [[c1]] ∪ [[c2]]

Hereby serr is a special error state that does not satisfy any assertion, i.e. serr 6|= F for
any assertion F . Give proper relational semantics to the missing guarded commands.

Exercise 3: Weakest preconditions
We can define weakest preconditions in terms of the relational semantics of loop free
guarded commands:

wp(c, S) = { s | ∀s ′.(s , s ′) ∈ [[c]]→ s ′ ∈ S }

Prove that the weakest precondition semantics given in the lecture is correct with respect
to the relational semantics for the cases: assert(G) and c1 � c2, i.e. prove:

(a) wp(assert(G), [[F]]) = [[G ∧ F]], and

(b) wp(c1 � c2, [[F]]) = wp(c1, [[F]]) ∩ wp(c2, [[F]])

where [[F]] = { s | s |= F }.

