Formal Methods for Java
 Lecture 23: Dynamic Logic

Jochen Hoenicke

ั๊ Software Engineering
$-\frac{\text { 弟 }}{\text { 른 }}$
Albert-Ludwigs-University Freiburg

January 25, 2013

The K§y_Project

- Theorem Prover
- Developed at University of Karlsruhe
- http://www.key-project.org/.
- Theory specialized for Java(Card).
- Can generate proof-obligations from JML specification.
- Underlying theory: Sequent Calculus + Dynamic Logic

Dynamic Logic

Dynamic logic extends predicate logic by

- $[\alpha] \phi$
- $\langle\alpha\rangle \phi$
where α is a program and ϕ a sub-formula.
The meaning is as follows:
- $[\alpha] \phi$: after all terminating runs of program α formula ϕ holds.
- $\langle\alpha\rangle \phi$: after some terminating run of program α formula ϕ holds.

Comparison with Hoare Logic

The sequent $\phi \Longrightarrow[\alpha] \psi$ corresponds to partial correctness of the Hoare formula:

$$
\{\phi\} \alpha\{\psi\}
$$

If α is deterministic, $\phi \Longrightarrow\langle\alpha\rangle \psi$ corresponds to total correctness.

Examples

- [\{\}] $\phi \equiv \phi$
- $\langle\}\rangle \phi \equiv \phi$
- [while(true) $\}] \phi \equiv$ true
- $\langle\boldsymbol{w h i l e}($ true $)\}\rangle \phi \equiv$ false
- $[x=x+1 ;] x \geq 4 \equiv x+1 \geq 4$
- $[x=t ;] \phi \equiv \phi[t / x]$
- $\left[\alpha_{1} \alpha_{2}\right] \phi \equiv\left[\alpha_{1}\right]\left[\alpha_{2}\right] \phi$

How can we use equivalences in Sequent Calculus?
Add the rule $\frac{\Gamma[\psi / \phi] \Longrightarrow \Delta[\psi / \phi]}{\Gamma \Longrightarrow \Delta}$, where $\phi \equiv \psi$.
This is similar to applyEq.

Dynamic Logic is Modal Logic

- $\langle\alpha\rangle \phi \equiv \neg[\alpha] \neg \phi$
- $[\alpha] \phi \equiv \neg\langle\alpha\rangle \neg \phi$

Furthermore:

- if ϕ is a tautology, so is [α] ϕ
- $[\alpha](\phi \rightarrow \psi) \rightarrow([\alpha] \phi \rightarrow[\alpha] \psi)$

Remark: For deterministic programs also the reverse holds

$$
([\alpha] \phi \rightarrow[\alpha] \psi) \rightarrow[\alpha](\phi \rightarrow \psi)
$$

Termination and Deterministic Programs

How can we express that program α must terminate?

$\langle\alpha\rangle$ true

This can be used to relate $[\alpha]$ and $\langle\alpha\rangle$:

$$
\langle\alpha\rangle \phi \equiv[\alpha] \phi \wedge\langle\alpha\rangle \text { true }
$$

Rigid vs.Non-Rigid Functions vs. Variables

KeY distinguishes the following symbols:

- Rigid Functions: These are functions that do not depend on the current state of the program.
- $+,-, *:$ integer \times integers \rightarrow integer (mathematical operations)
- $0,1, \ldots$: integer, TRUE, FALSE : boolean (mathematical constants)
- Non-Rigid Functions: These are functions that depend on current state.
- . [•] : $T \times$ int \rightarrow (array access)
- .next : $\top \rightarrow \top$ if next is a field of a class.
- $i, j: T$ if i, j are program variables.
- Variables: These are logical variables that can be quantified. Variables may not appear in programs.
- x, y, z

Example

$$
\forall x . \mathrm{i}=x \rightarrow\langle\{\text { while }(\mathrm{i}>0)\{\mathrm{i}=\mathrm{i}-1 ;\}\}\rangle \mathrm{i}=0
$$

- $0,1,-$ are rigid functions.
- $>$ is a rigid relation.
- i is a non-rigid function.
- x is a logical variable.

Quantification over i is not allowed and x must not appear in a program.

Builtin Rigid Functions

- $+,-, *, /, \%, j d i v, j m o d:$ operations on integer.
- ..., $-1,0,1, \ldots$, TRUE,FALSE, null: constants.
- (A) for any type A : cast function.
- A :: get gives the n-th object of type A.

Updates in KeY

The formula $\langle\mathrm{i}=t ; \alpha\rangle \phi$ is rewritten to

$$
\{i:=t\}\langle\alpha\rangle \phi
$$

Formula $\{\mathrm{i}:=t\} \phi$ is true, iff
ϕ holds in a state, where the program variable i has the value denoted by the term t.
Here:

- i is a program variable (non-rigid function).
- t is a term (may contain logical variables).
- ϕ a formula

Simplifying Updates

If ϕ contains no modalities, then $\{x:=t\} \phi$ is rewritten to $\phi[t / x]$.
A double update $\left\{x_{1}:=t_{1}, x_{2}:=t_{2}\right\}\left\{x_{1}:=t_{1}^{\prime}, x_{3}:=t_{3}^{\prime}\right\} \phi$ is automatically rewritten to

$$
\left\{x_{1}:=t_{1}^{\prime}\left[t_{1} / x_{1}, t_{2} / x_{2}\right], x_{2}:=t_{2}, x_{3}:=t_{3}^{\prime}\left[t_{1} / x_{1}, t_{2} / x_{2}\right]\right\} \phi
$$

