
J. Hoenicke
J. Christ

30.10.2012
Hand in solutions via email to

christj@informatik.uni-freiburg.de

until 06.11.2012 (only Java sources and
PDFs accepted) or at the beginning of the

lecture.

Tutorials for “Formal methods for Java”
Exercise sheet 2

Exercise 1: Operational semantics

(a) Give rules for the operational semantics of the ?: and the ! operator, i. e., specify
how to evaluate e ? st1 : st2 and !e.

(b) Consider the following Java class:

class C {

int x = 0;

public int m(boolean b) {

return (b = !b) ? x + 1 : x;

}

}

Use the rules defining the operational semantics of Java to compute the result of
the method call: c.m(true). Assume that c is an instance of class C which has just
been initialized.

Exercise 2: Loops with continue
Java provides the continue statement that when executed within a loop causes the
execution of the loop to immediately return to the loop head. Execution is then continued
as if the loop head would have been reached in normal execution. For simplicity, we assume
every loop is labeled, and every continue statement is followed by a label, i.e., a while
loop has the form l : while(e)s where l is the label of the loop.
We can model continue statements by extending the flow component of program states:

Flow ::= Norm|Ret |Exc〈〈Address〉〉|Continue〈〈Label〉〉 .

Use this extension to define the operational semantics of continue l statements and while
loops with continues.
Hint: You only need to define one axiom and one rule.

christj@informatik.uni-freiburg.de

Exercise 3: Operational equivalence
We say that two Java statements c1 and c2 are operationally equivalent if

∀flow , heap, lcl ,flow ′, heap ′, lcl ′. (flow , heap, lcl) c1−−→ (flow ′, heap ′, lcl ′) ⇐⇒
(flow , heap, lcl) c2−−→ (flow ′, heap ′, lcl ′)

Are the following pairs of Java statements operationally equivalent? Give a proof or a
counter-example.

(a) y = x++; and y = x; x++; , where x and y are local variables.

(b) if(e) c else c and c ,
where e is a boolean expression and c a statement.

(Bonus) Try to find a counterexample to the equivalence of e1 < e2 and − e1 > −e2
where e1 and e2 are integer-valued expressions. Although we did not present a rule
for negation, less, and greater you should assume the Java semantics.

