
Formal Methods for Java
Lecture 25: Proving a JML-Program with KeY

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

January 29, 2013

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 29, 2013 1 / 7

The -Project

Theorem Prover

Developed at University of Karlsruhe

http://www.key-project.org/.

Theory specialized for Java(Card).

Can generate proof-obligations from JML specification.

Underlying theory: Sequent Calculus + Dynamic Logic

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 29, 2013 2 / 7

http://www.key-project.org/

Case Study: Euklid’s Algorithm

Java code to compute gcd of non-negative numbers:

public static int gcd(int a, int b) {
while (a != 0 && b != 0) {

if (a > b)
a = a - b;

else
b = b - a;

}
return (a > b) ? a : b;

}

Lets prove it with KeY-System.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 29, 2013 3 / 7

Specification

We first need a specification.

Definition (GCD)

Let a and b be natural numbers. A number d is the greatest common
divisor (GCD) of a and b iff

1 d |a and d |b
2 If c |a and c |b, then c |d .

d |a means d divides a.
d |a :⇔ ∃q.d ∗ q = a

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 29, 2013 4 / 7

JML Specification

The specifation can be converted to JML:
/*@
@ requires a >= 0 && b >= 0;
@ ensures \result >= 0;
@ ensures (\exists int q; \result*q == a) &&
@ (\exists int q; \result*q == b) &&
@ (\forall int c;
@ (\exists int q; c*q == a) && (\exists int q; c*q == b);
@ (\exists int q; c*q == \result));
@*/

public static int gcd(int a, int b)

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 29, 2013 5 / 7

The rule while invariant with variant dec

The rule while invariant with variant dec takes an invariant inv , a modifies
set {m1, . . . ,mk} and a variant v . The following cases must be proven.

Initially Valid: =⇒ inv ∧ v ≥ 0
Body Preserves Invariant:

=⇒ {m1 := x1‖ . . . ‖mk := xk}(inv ∧ [{b = COND; }]b = true

→ 〈BODY 〉inv

Use Case:

=⇒ {m1 := x1‖ . . . ‖mk := xk}(inv ∧ [{b = COND; }]b = false

→ 〈. . .〉φ

Termination:

=⇒ {m1 := x1‖ . . . ‖mk := xk}(inv ∧ v ≥ 0 ∧ [{b = COND; }]b = true

→ {old := v}〈BODY 〉v ≤ old ∧ v ≥ 0

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 29, 2013 6 / 7

Loop-Invariant

What is the loop invariant?

The algorithm changes a and b, but the gcd of a and b should stay the
same.

In fact the set of common divisors of a and b never changes.
This suggests the following invariant:

∀d .(d | \old(a) ∧ d | \old(b)↔ d |a ∧ d |b)

In JML this can be specified as:
/*@ loop_invariant a >= 0 && b >= 0 &&
@ (\forall int d; true;
@ (\exists int q; \old(a) == q*d)
@ && (\exists int q; \old(b) == q*d)
@ <==>(\exists int q; a == q*d) && (\exists int q; b == q*d)
@);
@ assignable a, b;
@ decreases a+b;
@*/

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 29, 2013 7 / 7

