
Formal Methods for Java
Lecture 8: Java Pathfinder

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

Nov 16, 2012

Jochen Hoenicke (Software Engineering) FM4J Nov 16, 2012 1 / 21

Runtime checking vs. Model checking vs. Verification

Runtime Checking

JML Tools

Verification

ESC/Java2

KeY

Jahob

Model Checking

JPF

Jochen Hoenicke (Software Engineering) FM4J Nov 16, 2012 2 / 21

Java Pathfinder (JPF)

http://babelfish.arc.nasa.gov/trac/jpf/wiki

Developed at NASA Ames Research Center

One tool – many different usage patterns

Highly extensible core

Core implements explicit state model checking on top of a Java VM

Key concepts:

Execution choices as transition breakers
State matching
Backtracking (restoring previous state)
Listeners, Properties, and Publishers

Jochen Hoenicke (Software Engineering) FM4J Nov 16, 2012 3 / 21

History of JPF

1999 Start as front end for the Spin model checker.

. .

2000 Reimplementation as virtual machine

2003 Extension interfaces

2005 Open sourced on Sourceforge

since 2008 Participation in Google Summer of Code

since 2009 Project, extensions, and wiki hosted on NASA servers (still
open source)

Jochen Hoenicke (Software Engineering) FM4J Nov 16, 2012 4 / 21

Obtaining and Building JPF

Download from http://babelfish.arc.nasa.gov/trac/jpf

Binary builds not recommended since tool still evolves

Recommendation: use Mercurial repositories

> hg clone http://babelfish.arc.nasa.gov/hg/jpf/jpf-core

Repository contains everything needed to build jpf-core

> bin/ant

Instructions for Eclipse or NetBeans can be found in the JPF wiki

Jochen Hoenicke (Software Engineering) FM4J Nov 16, 2012 5 / 21

http://babelfish.arc.nasa.gov/trac/jpf

What We Got

http://babelfish.arc.nasa.gov/trac/jpf/wiki

Jochen Hoenicke (Software Engineering) FM4J Nov 16, 2012 6 / 21

VM Inside a VM?

JPF is written in Java =⇒ runs on a JVM

JPF interprets Java Bytecode =⇒ acts as a JVM

JPF operates differently:

Bytecode of System under Test (SUT) and
SUT-specific Configuration produce
a report and (possibly) some other artefacts (e.g., test cases)

JPF might terminate the application if a property is violated

Jochen Hoenicke (Software Engineering) FM4J Nov 16, 2012 7 / 21

How to Configure JPF

JPF Configuration

http://babelfish.arc.nasa.gov/trac/jpf/wiki

Jochen Hoenicke (Software Engineering) FM4J Nov 16, 2012 9 / 21

JPF Configuration Files

Basically Java properties files:

key=value assigns value to key

This is a comment

Extensions:

${x} expands to current value of variable x

key+=value appends value to the value of key
(No space between key and +=)
+key=value prepend value to the value of key
${config_path} expands to the directory of the currently parsed file
${config} expands to the filename of the currently parsed file
@using=<project-name> loads project project-name from location
defined in site.properties with line
<project-name>=<project-path>

. . .

Shortcut for class names: package prefix gov.nasa.jpf can be omitted

Configuration of JPF can be difficult

Jochen Hoenicke (Software Engineering) FM4J Nov 16, 2012 10 / 21

Configuring Our Compiled Version

Switch to your home directory

Create folder .jpf

Create file .jpf/site.properties

jpf.home = <Path where you downloaded jpf>

jpf-core = ${jpf.home}/jpf-core

extensions = ${jpf-core}

This creates the basic configuration

Add line jpf-proj = path to site.properties for every
additional project you download

Jochen Hoenicke (Software Engineering) FM4J Nov 16, 2012 11 / 21

Configuring SuTs

Create configuration file (typically ends with .jpf)

Content:

Some @using directives (optionally)
One line target = <SuT>

Optional arguments in a line target_args = <args>

Additional JPF and related project configuration (optional)
Optional classpath entry to locate the .class file
Optional sourcepath entry to locate the .java file

Jochen Hoenicke (Software Engineering) FM4J Nov 16, 2012 12 / 21

Demo

Jochen Hoenicke (Software Engineering) FM4J Nov 16, 2012 13 / 21

Insights into JPF

JPF Components

http://babelfish.arc.nasa.gov/trac/jpf/wiki

Jochen Hoenicke (Software Engineering) FM4J Nov 16, 2012 15 / 21

JPF Core Architecture

http://babelfish.arc.nasa.gov/trac/jpf/wiki

Jochen Hoenicke (Software Engineering) FM4J Nov 16, 2012 16 / 21

Explicit State Model Checking and JPF (1/3)

JVM

Unifies states, produces successor states, backtracks
Configurations:

vm.class VM implementation

vm.insn factory instruction factory

vm.por apply partial order reduction

vm.por.sync detection detect fields protected by locks

vm.gc run garbage collection

vm.max alloc gc maximal number of allocations before garbage
collection

vm.tree output generate output for all explored paths

vm.path output generate program trace output

. . . and many, many more

Jochen Hoenicke (Software Engineering) FM4J Nov 16, 2012 17 / 21

Explicit State Model Checking and JPF (2/3)

Search

Selects next state to explore.
Configurations:

search.class search implementation

search.depth limit maximal path length

search.match depth only unify if depth for revisit is lower than known
depth

search.multiple errors do not stop searching at first property violation

search.properties which properties to check during search

. . . further options for each search

Jochen Hoenicke (Software Engineering) FM4J Nov 16, 2012 18 / 21

Explicit State Model Checking and JPF (3/3)

Listener

Evaluate states against properties.
Listeners can influence current transition while properties cannot.
Listener can monitor search and instruction execution.
Own listener can be set with the listener configuration option.

http://babelfish.arc.nasa.gov/trac/jpf/wiki

Jochen Hoenicke (Software Engineering) FM4J Nov 16, 2012 19 / 21

States

Collection of

thread state (current instruction, stack),

global variables,

heap references, and

trail (path to the state)

Jochen Hoenicke (Software Engineering) FM4J Nov 16, 2012 20 / 21

Transitions

Sequence of instructions
End of transition determined by

Multiple successor states (choices)
Enforced by listeners (vm.breakTransition();)
Reached maximal length (configuration vm.max_transition_length)
End or blocking of current thread

http://babelfish.arc.nasa.gov/trac/jpf/wiki

Jochen Hoenicke (Software Engineering) FM4J Nov 16, 2012 21 / 21

	How to Configure JPF
	Insights into JPF

