Formal Methods for Java
 Lecture 20: Sequent Calculus

Jochen Hoenicke

ั๊ Software Engineering

Albert-Ludwigs-University Freiburg

January 15, 2013

Runtime vs. Static Checking

Runtime Checking

- finds bugs at run-time,
- tests for violation during execution,
- can check most of the JML,
- is done by jmlrac.

Static Checking

- finds bugs at compile-time,
- proves that there is no violation,
- can check only parts of the JML,
- is done by ESC/Java or Jahob.

The KQY_Project

- Developed at University of Karlsruhe
- http://www.key-project.org/.
- Interactive Theorem Prover
- Theory specialized for Java(Card).
- Can generate proof-obligations from JML specification.
- Underlying theory: Sequent Calculus + Dynamic Logic
- Proofs are given manually.

Sequent Calculus

Definition (Sequent)

A sequent is a formula

$$
\phi_{1}, \ldots, \phi_{n} \Longrightarrow \psi_{1}, \ldots, \psi_{m}
$$

where ϕ_{i}, ψ_{i} are formulae.
The meaning of this formula is:

$$
\phi_{1} \wedge \ldots \wedge \phi_{n} \rightarrow \psi_{1} \vee \ldots \vee \psi_{m}
$$

Why are sequents useful?
Simple syntax and nice calculus

Example for Sequents

$$
q=y / x, r=y \% x \Longrightarrow x=0, y=q * x+r
$$

It is logically equivalent to the formula:

$$
q=y / x \wedge r=y \% x \rightarrow x=0 \vee y=q * x+r
$$

This is equivalent to the sequent

$$
\Longrightarrow q=y / x \wedge r=y \% x \rightarrow x=0 \vee y=q * x+r
$$

Another equivalent sequent is:

$$
x \neq 0, q=y / x, r=y \% x \Longrightarrow y=q * x+r
$$

The Empty Sequent

What is the meaning of the following sequent?
\qquad
This is equivalent to

$$
\text { true } \Longrightarrow \text { false }
$$

which is false.

Sequent Calculus

To prove a goal (a formula) with sequent calculus:

- Start with the goal at the bottom
- Use rules to derive formulas, s.t. formulas are sufficient to prove the goal, formulas are simpler.
- A proof node can be closed if it holds trivially.

A Rule of Sequent Calculus

$$
\text { Rule impl-right: } \quad \stackrel{\Gamma, \phi \Longrightarrow \Delta, \psi}{\Gamma \Longrightarrow \Delta, \phi \rightarrow \psi}
$$

This rule is sound:

$$
\Gamma \wedge \phi \rightarrow \Delta \vee \psi
$$

implies

$$
\ulcorner\rightarrow \Delta \vee(\phi \rightarrow \psi)
$$

Here Δ and Γ stand for an arbitrary set of formulae. We abstract from order: rule is also applicable if $\phi \rightarrow \psi$ occur in the middle of the right-hand side, e.g.:

$$
\frac{\chi_{1}, \phi \Longrightarrow \chi_{2}, \psi, \chi_{3}}{\chi_{1} \Longrightarrow \chi_{2}, \phi \rightarrow \psi, \chi_{3}}
$$

A Sequent Calculus Proof

Axiom close: $\Gamma, \phi \Longrightarrow \Delta, \phi \quad$ Rule impl-right: $\frac{\Gamma, \phi \Longrightarrow \Delta, \psi}{\Gamma \Longrightarrow \Delta, \phi \rightarrow \psi}$
Rule and-left: $\frac{\Gamma, \phi, \psi \Longrightarrow \Delta}{\Gamma, \phi \wedge \psi \Longrightarrow \Delta} \quad$ Rule and-right: $\frac{\Gamma \Longrightarrow \Delta, \phi \quad \Gamma \Longrightarrow \Delta, \psi}{\Gamma \Longrightarrow \Delta, \phi \wedge \psi}$ Let's prove that \wedge commutes: $\phi \wedge \psi \rightarrow \psi \wedge \phi$.

$$
\begin{gathered}
\overline{\phi, \psi \Longrightarrow \psi} \text { close } \overline{\phi, \psi \Longrightarrow \phi} \text { and-right } \\
\frac{\phi, \psi \Longrightarrow \psi \wedge \phi}{\overline{\phi \wedge \psi \Longrightarrow \psi \wedge \phi} \text { and-left }} \text { impl-right }
\end{gathered}
$$

Sequent Calculus Logical Rules

close: $\Gamma, \phi \Longrightarrow \Delta, \phi$
false: Γ, false $\Longrightarrow \Delta$
not-left: $\frac{\Gamma \Longrightarrow \Delta, \phi}{\Gamma, \neg \phi \Longrightarrow \Delta}$
and-left: $\frac{\Gamma, \phi, \psi \Longrightarrow \Delta}{\Gamma, \phi \wedge \psi \Longrightarrow \Delta}$
or-left: $\frac{\Gamma, \phi \Longrightarrow \Delta \Gamma, \psi \Longrightarrow \Delta}{\Gamma, \phi \vee \psi \Longrightarrow \Delta}$ impl-left: $\frac{\Gamma \Longrightarrow \Delta, \phi \quad \Gamma, \psi \Longrightarrow \Delta}{\Gamma, \phi \rightarrow \psi \Longrightarrow \Delta}$
true: $\Gamma \Longrightarrow \Delta$, true
not-right: $\frac{\Gamma, \phi \Longrightarrow \Delta}{\Gamma \Longrightarrow \Delta, \neg \phi}$
and-right: $\frac{\Gamma \Longrightarrow \Delta, \phi \quad \Gamma \Longrightarrow \Delta, \psi}{\Gamma \Longrightarrow \Delta, \phi \wedge \psi}$
or-right: $\frac{\Gamma \Longrightarrow \Delta, \phi, \psi}{\Gamma \Longrightarrow \Delta, \phi \vee \psi}$
impl-right: $\frac{\Gamma, \phi \Longrightarrow \Delta, \psi}{\Gamma \Longrightarrow \Delta, \phi \rightarrow \psi}$

Sequent Calculus All-Quantifier

all-left: $\frac{\Gamma, \forall X \phi(X), \phi(t) \Longrightarrow \Delta}{\Gamma, \forall X \phi(X) \Longrightarrow \Delta}$, where t is some arbitrary term.
This is sound because $\forall X \phi(X)$ implies $\phi(t)$.
all-right: $\frac{\Gamma \Longrightarrow \Delta, \phi\left(x_{0}\right)}{\Gamma \Longrightarrow \Delta, \forall X \phi(X)}$, where x_{0} is a fresh identifier.
x_{0} is called a Skolem constant.

Sequent Calculus Quantifier

The rules for the existential quantifier are dual:
all-left: $\frac{\Gamma, \forall X \phi(X), \phi(t) \Longrightarrow \Delta}{\Gamma, \forall X \phi(X) \Longrightarrow \Delta}$, where t is some arbitrary term.
all-right: $\frac{\Gamma \Longrightarrow \Delta, \phi\left(x_{0}\right)}{\Gamma \Longrightarrow \Delta, \forall X \phi(X)}$, where x_{0} is a fresh identifier.
exists-left: $\frac{\Gamma, \phi\left(x_{0}\right) \Longrightarrow \Delta}{\Gamma, \exists X \phi(X) \Longrightarrow \Delta}$, where x_{0} is a fresh identifier.
exists-right: $\frac{\Gamma \Longrightarrow \Delta, \exists X \phi(X), \phi(t)}{\Gamma \Longrightarrow \Delta, \exists X \phi(X)}$, where t is some arbitrary term.

Example: $(\forall X \phi(X)) \vee(\exists X \neg \phi(X))$

close: $\Gamma, \phi \Longrightarrow \Delta, \phi$ not-right: $\frac{\Gamma, \phi \Longrightarrow \Delta}{\Gamma \Longrightarrow \Delta, \neg \phi}$ or-right: $\frac{\Gamma \Longrightarrow \Delta, \phi, \psi}{\Gamma \Longrightarrow \Delta, \phi \vee \psi}$ all-right: $\frac{\Gamma \Longrightarrow \Delta, \phi\left(x_{0}\right)}{\Gamma \Longrightarrow \Delta, \forall X \phi(X)}$, where x_{0} is a fresh identifier.
exists-right: $\xrightarrow[\Gamma \Longrightarrow \Delta, \exists X \phi(X), \phi(t)]{\Gamma \Longrightarrow \Delta, \exists X(X)}$, where t is some arbitrary term.
Let's prove $(\forall X \phi(X)) \vee(\exists X \neg \phi(X))$.

$$
\begin{aligned}
& \hline \phi\left(x_{0}\right) \Longrightarrow \phi\left(x_{0}\right), \exists X \neg \phi(X) \\
& \Longrightarrow \phi\left(x_{0}\right), \exists X \neg \phi(X), \neg \phi\left(x_{0}\right) \\
& \text { close } \\
& \text { not-right } \\
& \text { exists-right } \\
& \Longrightarrow \phi\left(x_{0}\right), \exists X \neg \phi(X) \\
& \Longrightarrow \forall X \phi(X), \exists X \neg \phi(X) \\
& \text { all-right } \\
& \Longrightarrow \forall X \phi(X) \vee \exists X \neg \phi(X)
\end{aligned} \text { or-right }
$$

Rules for equality

$$
\begin{aligned}
& \text { eq-close: } \Gamma \Longrightarrow \Delta, t=t \\
& \text { apply-eq: } \frac{s=t, \Gamma[t / s] \Longrightarrow \Delta[t / s]}{s=t, \Gamma \Longrightarrow \Delta}
\end{aligned}
$$

These rules suffice to prove $x=y \Longrightarrow y=x$ and $x=y, y=z \Longrightarrow x=z$.

$$
\begin{aligned}
& \overline{x=y \Longrightarrow x=x} \text { eq-close } \\
& x=y \Longrightarrow y=x
\end{aligned} \text { apply-eq }
$$

$$
\begin{aligned}
& \overline{x=y, y=z \Longrightarrow y=z} \begin{array}{l}
\text { close } \\
x=y, y=z \Longrightarrow x=z
\end{array} \text { apply-eq }
\end{aligned}
$$

Soundness and Completeness

Theorem (Soundness and Completeness)

The sequent calculus with the rules presented on the previous three slides is sound and complete

- Soundness: Only true facts can be proven with the calculus.
- Completeness: Every true fact can be proven with the calculus.

Signature

Definition (Signature)

A signature Sig $=($ Func, Pred $)$ is a tuple of sets of function and predicate symbols, where

- $f / k \in$ Func if f is a function symbol with k parameters,
- $p / k \in$ Pred if p is a predicate symbol with k parameters.

A constant $c / 0 \in$ Func is a function without parameters. We assume there are infinitely many constants.

Structures

Definition (Structure)

A structure \mathcal{M} is a tuple $(\mathcal{D}, \mathcal{I})$. The domain \mathcal{D} is an arbitrary non-empty set. The interpretation \mathcal{I} assigns to

- each function symbol $f / k \in$ Func of arity k a function

$$
\mathcal{I}(f): \mathcal{D}^{k} \rightarrow \mathcal{D}
$$

- and each predicate symbol $p / k \in$ Pred of arity k a function

$$
\mathcal{I}(p): \mathcal{D}^{k} \rightarrow\{\text { true, false }\}
$$

The interpretation $\mathcal{I}(c)$ of a constant $c / 0 \in$ Func is an element of \mathcal{D}.
Let $\mathcal{M}=(\mathcal{D}, \mathcal{I}), c$ a constant and $d \in \mathcal{D}$. With $\mathcal{M}[c:=d]$ we denote the structure $\left(\mathcal{D}, \mathcal{I}^{\prime}\right)$, where $\mathcal{I}^{\prime}(c)=d$ and $\mathcal{I}^{\prime}(f)=\mathcal{I}(f)$ for all other function symbols f and $\mathcal{I}^{\prime}(p)=\mathcal{I}(p)$ for all predicate symbols p.

Semantics of Terms and Formulas

Let $\mathcal{M}=(\mathcal{D}, \mathcal{I})$ be a structure.
The semantics $\mathcal{M} \llbracket t \rrbracket$ of a term t is defined inductively by
$\mathcal{M} \llbracket f\left(t_{1}, \ldots, t_{k}\right) \rrbracket=\mathcal{I}(f)\left(\mathcal{M} \llbracket t_{1} \rrbracket, \ldots, \mathcal{M} \llbracket t_{k} \rrbracket\right)$, in particular $\mathcal{M} \llbracket c \rrbracket=\mathcal{I}(c)$.

The semantics of formula $\phi, \mathcal{M} \llbracket \phi \rrbracket \in\{$ true, false $\}$, is defined by

- $\mathcal{M} \llbracket p\left(t_{1}, \ldots, t_{k}\right) \rrbracket=\mathcal{I}(p)\left(\mathcal{M} \llbracket t_{1} \rrbracket, \ldots, \mathcal{M} \llbracket t_{k} \rrbracket\right)$.
- $\mathcal{M} \llbracket s=t \rrbracket=$ true, iff $\mathcal{M} \llbracket s \rrbracket=\mathcal{M} \llbracket t \rrbracket$.
- $\mathcal{M} \llbracket \phi \wedge \psi \rrbracket= \begin{cases}\text { true } & \text { if } \mathcal{M} \llbracket \phi \rrbracket=\text { true and } \mathcal{M} \llbracket \psi \rrbracket=\text { true }, \\ \text { false } & \text { otherwise. }\end{cases}$
- $\mathcal{M} \llbracket \phi \vee \psi \rrbracket, \mathcal{M} \llbracket \phi \rightarrow \psi \rrbracket$, and $\mathcal{M} \llbracket \neg \phi \rrbracket$, analogously.
- $\mathcal{M} \llbracket \forall X \phi(X) \rrbracket=$ true, iff for all $d \in \mathcal{D}: \mathcal{M}\left[x_{0}:=d\right] \llbracket \phi\left(x_{0}\right) \rrbracket=$ true, where x_{0} is a constant not occuring in ϕ.
- $\mathcal{M} \llbracket \exists X \phi(X) \rrbracket=$ true, iff there is some $d \in \mathcal{D}$ with $\mathcal{M}\left[x_{0}:=d\right] \llbracket \phi\left(x_{0}\right) \rrbracket=$ true, where x_{0} is a constant not occuring in ϕ.

Models and Tautologies

Definition (Model)

A structure \mathcal{M} is a model of a sequent $\phi_{1}, \ldots, \phi_{n} \Longrightarrow \psi_{1}, \ldots, \psi_{m}$ if $\mathcal{M} \llbracket \phi_{i} \rrbracket=$ false for some $1 \leq i \leq n$, or if $\mathcal{M} \llbracket \psi_{j} \rrbracket=$ true for some $1 \leq j \leq m$. We say that the sequent holds in \mathcal{M}.
A sequent $\phi_{1}, \ldots, \phi_{n} \Longrightarrow \psi_{1}, \ldots, \psi_{m}$ is a tautology, if all structures are models of this sequent.

Soundness

Definition (Soundness)

A calculus is sound, iff every formula F for which a proof exists is a tautology.

- We write $\vdash F$ to indicate that a proof for F exists.
- We write $\vDash F$ to indicate that F is a tautology.

