
Formal Methods for Java
Lecture 20: Sequent Calculus

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

January 15, 2013

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 1 / 20



Runtime vs. Static Checking

Runtime Checking

finds bugs at run-time,

tests for violation during execution,

can check most of the JML,

is done by jmlrac.

Static Checking

finds bugs at compile-time,

proves that there is no violation,

can check only parts of the JML,

is done by ESC/Java or Jahob.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 2 / 20



The -Project

Developed at University of Karlsruhe

http://www.key-project.org/.

Interactive Theorem Prover

Theory specialized for Java(Card).

Can generate proof-obligations from JML specification.

Underlying theory: Sequent Calculus + Dynamic Logic

Proofs are given manually.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 3 / 20

http://www.key-project.org/


Sequent Calculus

Definition (Sequent)

A sequent is a formula

φ1, . . . , φn =⇒ ψ1, . . . , ψm

where φi , ψi are formulae.
The meaning of this formula is:

φ1 ∧ . . . ∧ φn → ψ1 ∨ . . . ∨ ψm

Why are sequents useful?

Simple syntax and nice calculus

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 4 / 20



Example for Sequents

q = y/x , r = y%x =⇒ x = 0, y = q ∗ x + r

It is logically equivalent to the formula:

q = y/x ∧ r = y%x → x = 0 ∨ y = q ∗ x + r

This is equivalent to the sequent

=⇒ q = y/x ∧ r = y%x → x = 0 ∨ y = q ∗ x + r

Another equivalent sequent is:

x 6= 0, q = y/x , r = y%x =⇒ y = q ∗ x + r

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 5 / 20



The Empty Sequent

What is the meaning of the following sequent?

=⇒

This is equivalent to
true =⇒ false

which is false.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 6 / 20



Sequent Calculus

To prove a goal (a formula) with sequent calculus:

Start with the goal at the bottom

Use rules to derive formulas, s.t.
formulas are sufficient to prove the goal, formulas are simpler.

A proof node can be closed if it holds trivially.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 7 / 20



A Rule of Sequent Calculus

Rule impl-right:
Γ, φ =⇒ ∆, ψ

Γ =⇒ ∆, φ→ ψ

This rule is sound:
Γ ∧ φ→ ∆ ∨ ψ

implies
Γ→ ∆ ∨ (φ→ ψ)

Here ∆ and Γ stand for an arbitrary set of formulae. We abstract from
order: rule is also applicable if φ→ ψ occur in the middle of the
right-hand side, e.g.:

χ1, φ =⇒ χ2, ψ, χ3

χ1 =⇒ χ2, φ→ ψ, χ3

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 8 / 20



A Sequent Calculus Proof

Axiom close: Γ, φ =⇒ ∆, φ Rule impl-right:
Γ, φ =⇒ ∆, ψ

Γ =⇒ ∆, φ→ ψ

Rule and-left:
Γ, φ, ψ =⇒ ∆

Γ, φ ∧ ψ =⇒ ∆
Rule and-right:

Γ =⇒ ∆, φ Γ =⇒ ∆, ψ

Γ =⇒ ∆, φ ∧ ψ
Let’s prove that ∧ commutes: φ ∧ ψ → ψ ∧ φ.

φ, ψ =⇒ ψ
close

φ, ψ =⇒ φ
close

φ, ψ =⇒ ψ ∧ φ and-right

φ ∧ ψ =⇒ ψ ∧ φ and-left

=⇒ φ ∧ ψ → ψ ∧ φ impl-right

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 9 / 20



Sequent Calculus Logical Rules

close: Γ, φ =⇒ ∆, φ

false: Γ, false =⇒ ∆ true: Γ =⇒ ∆, true

not-left:
Γ =⇒ ∆, φ

Γ,¬φ =⇒ ∆
not-right:

Γ, φ =⇒ ∆

Γ =⇒ ∆,¬φ

and-left:
Γ, φ, ψ =⇒ ∆

Γ, φ ∧ ψ =⇒ ∆
and-right:

Γ =⇒ ∆, φ Γ =⇒ ∆, ψ

Γ =⇒ ∆, φ ∧ ψ

or-left:
Γ, φ =⇒ ∆ Γ, ψ =⇒ ∆

Γ, φ ∨ ψ =⇒ ∆
or-right:

Γ =⇒ ∆, φ, ψ

Γ =⇒ ∆, φ ∨ ψ

impl-left:
Γ =⇒ ∆, φ Γ, ψ =⇒ ∆

Γ, φ→ ψ =⇒ ∆
impl-right:

Γ, φ =⇒ ∆, ψ

Γ =⇒ ∆, φ→ ψ

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 10 / 20



Sequent Calculus All-Quantifier

all-left:
Γ,∀X φ(X ), φ(t) =⇒ ∆

Γ, ∀X φ(X ) =⇒ ∆
, where t is some arbitrary term.

This is sound because ∀X φ(X ) implies φ(t).

all-right:
Γ =⇒ ∆, φ(x0)

Γ =⇒ ∆,∀X φ(X )
, where x0 is a fresh identifier.

x0 is called a Skolem constant.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 11 / 20



Sequent Calculus Quantifier

The rules for the existential quantifier are dual:

all-left:
Γ,∀X φ(X ), φ(t) =⇒ ∆

Γ, ∀X φ(X ) =⇒ ∆
, where t is some arbitrary term.

all-right:
Γ =⇒ ∆, φ(x0)

Γ =⇒ ∆,∀X φ(X )
, where x0 is a fresh identifier.

exists-left:
Γ, φ(x0) =⇒ ∆

Γ,∃X φ(X ) =⇒ ∆
, where x0 is a fresh identifier.

exists-right:
Γ =⇒ ∆,∃X φ(X ), φ(t)

Γ =⇒ ∆, ∃X φ(X )
, where t is some arbitrary term.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 12 / 20



Example: (∀Xφ(X )) ∨ (∃X¬φ(X ))

close: Γ, φ =⇒ ∆, φ not-right:
Γ, φ =⇒ ∆

Γ =⇒ ∆,¬φ
or-right:

Γ =⇒ ∆, φ, ψ

Γ =⇒ ∆, φ ∨ ψ

all-right:
Γ =⇒ ∆, φ(x0)

Γ =⇒ ∆,∀X φ(X )
, where x0 is a fresh identifier.

exists-right:
Γ =⇒ ∆,∃X φ(X ), φ(t)

Γ =⇒ ∆, ∃X φ(X )
, where t is some arbitrary term.

Let’s prove (∀Xφ(X )) ∨ (∃X¬φ(X )).

φ(x0) =⇒ φ(x0),∃X¬φ(X )
close

=⇒ φ(x0), ∃X¬φ(X ),¬φ(x0)
not-right

=⇒ φ(x0),∃X¬φ(X )
exists-right

=⇒ ∀Xφ(X ), ∃X¬φ(X )
all-right

=⇒ ∀Xφ(X ) ∨ ∃X¬φ(X )
or-right

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 13 / 20



Rules for equality

eq-close: Γ =⇒ ∆, t = t

apply-eq:
s = t, Γ[t/s] =⇒ ∆[t/s]

s = t, Γ =⇒ ∆

These rules suffice to prove x = y =⇒ y = x and x = y , y = z =⇒ x = z .

x = y =⇒ x = x eq-close

x = y =⇒ y = x apply-eq

x = y , y = z =⇒ y = z close

x = y , y = z =⇒ x = z apply-eq

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 14 / 20



Soundness and Completeness

Theorem (Soundness and Completeness)

The sequent calculus with the rules presented on the previous three slides
is sound and complete

Soundness: Only true facts can be proven with the calculus.

Completeness: Every true fact can be proven with the calculus.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 15 / 20



Signature

Definition (Signature)

A signature Sig = (Func ,Pred) is a tuple of sets of function and predicate
symbols, where

f /k ∈ Func if f is a function symbol with k parameters,

p/k ∈ Pred if p is a predicate symbol with k parameters.

A constant c/0 ∈ Func is a function without parameters. We assume
there are infinitely many constants.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 16 / 20



Structures

Definition (Structure)

A structure M is a tuple (D, I). The domain D is an arbitrary non-empty
set. The interpretation I assigns to

each function symbol f /k ∈ Func of arity k a function

I(f ) : Dk → D

and each predicate symbol p/k ∈ Pred of arity k a function

I(p) : Dk → {true, false}.

The interpretation I(c) of a constant c/0 ∈ Func is an element of D.

Let M = (D, I), c a constant and d ∈ D. With M[c := d ] we denote the
structure (D, I ′), where I ′(c) = d and I ′(f ) = I(f ) for all other function
symbols f and I ′(p) = I(p) for all predicate symbols p.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 17 / 20



Semantics of Terms and Formulas

Let M = (D, I) be a structure.
The semantics M[[t]] of a term t is defined inductively by

M[[f (t1, . . . , tk)]] = I(f )(M[[t1]], . . . ,M[[tk ]]), in particular M[[c]] = I(c).

The semantics of formula φ, M[[φ]] ∈ {true, false}, is defined by

M[[p(t1, . . . , tk)]] = I(p)(M[[t1]], . . . ,M[[tk ]]).

M[[s = t]] = true, iff M[[s]] =M[[t]].

M[[φ ∧ ψ]] =

{
true if M[[φ]] = true and M[[ψ]] = true,

false otherwise.

M[[φ ∨ ψ]], M[[φ→ ψ]], and M[[¬φ]], analogously.

M[[∀X φ(X )]] = true, iff for all d ∈ D: M[x0 := d ][[φ(x0)]] = true,
where x0 is a constant not occuring in φ.

M[[∃X φ(X )]] = true, iff there is some d ∈ D with
M[x0 := d ][[φ(x0)]] = true, where x0 is a constant not occuring in φ.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 18 / 20



Models and Tautologies

Definition (Model)

A structure M is a model of a sequent φ1, . . . , φn =⇒ ψ1, . . . , ψm if
M[[φi ]] = false for some 1 ≤ i ≤ n, or if M[[ψj ]] = true for some
1 ≤ j ≤ m. We say that the sequent holds in M.
A sequent φ1, . . . , φn =⇒ ψ1, . . . , ψm is a tautology, if all structures are
models of this sequent.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 19 / 20



Soundness

Definition (Soundness)

A calculus is sound, iff every formula F for which a proof exists is a
tautology.

We write ` F to indicate that a proof for F exists.

We write |= F to indicate that F is a tautology.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 20 / 20


