
Formal Methods for Java
Lecture 27: Abnormal Termination in Key

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

February 7, 2013

Jochen Hoenicke (Software Engineering) Formal Methods for Java February 7, 2013 1 / 9

Abnormal Termination in Java

Abnormal termination in Java is caused by

a break statement,

a continue statement,

a return statement,

a throw statement, or

a statement that throws a exception.

Jochen Hoenicke (Software Engineering) Formal Methods for Java February 7, 2013 2 / 9

Abnormal Termination in Dynamic Logic

The formula 〈α〉φ holds,

iff α terminates normally and φ holds afterwards.

The formula [α]φ holds,

if α terminates normally and φ holds afterwards.

if α terminates abnormally.

if α does not terminate at all.

Jochen Hoenicke (Software Engineering) Formal Methods for Java February 7, 2013 3 / 9

Reasoning about exceptions.

How can we express that statement α throws an exception?

〈{α}〉φ is equivalent to false if α throws an exception or does not
terminate

[{α}]φ is equivalent to true if α throws an exception or does not
terminate

The trick is to put an exception handler into the code:

〈{Throwable thrown = null ;

try {α; }
catch (Throwable ex){thrown = ex ; }}〉thrown 6= null

Jochen Hoenicke (Software Engineering) Formal Methods for Java February 7, 2013 4 / 9

Reasoning with try-catch blocks

When an exception is thrown, the surrounding try blocks become
important:
\find(\<{ .. try { throw #se; #slist1 }

catch (#t #v0) { #slist2 } ... }\> post)

1 throwing a handled exception: #se instanceof #t
\replacewith(\<{ .. #t #v0 = #se; #slist2 ... }\> post)

2 throwing an unhandled exception: ! (#se instanceof #t)
\replacewith(\<{ .. throw #se; ... }\> post)

3 throwing a null pointer: #se = null
\replacewith(\< { .. try { throw new NullPointerExc(); #slist1

catch (#t #v0) { #slist2 } ... }\> post)

The KeY system defines a single rule:
\replacewith(\< { .. if (#se = null) then

try { throw new NullPointerExc(); #slist1
catch (#t #v0) { #slist2 }

else if (#se instanceof #t) then
#t v0 = #se; #slist2

else throw #se;
... }\> post)

Jochen Hoenicke (Software Engineering) Formal Methods for Java February 7, 2013 5 / 9

Throw without try-catch blocks

If the surrounding block is not a try block, the block is just removed:
\find(\<{ .. #label: { throw #se; #slist1 } ... }\> post)
\replacewith(\<{ .. throw #se; ... }\> post)

If there is no surrounding block it depends on modality:

1 total correctness:
\find(\<{ throw #se }\> post)
\replacewith(false)

2 partial correctness:
\find(\[{ throw #se }\] post)
\replacewith(true)

Jochen Hoenicke (Software Engineering) Formal Methods for Java February 7, 2013 6 / 9

Runtime exceptions

Instructions that throw exceptions are converted to a throw instruction:
\find(\<{ .. #v[#se]=#se0 ... }\> post)

Normal Execution #v != null
\add(!#v = null &

#se < #v.length & #se >= 0 &
arrayStoreValid(#v, #se0) ==>)

\replacewith(\{#v[#se] := #se0\}\<{}\> post)

Null Reference #v == null
\add(#v = null ==>)
\replacewith(\<{ .. throw new NullPointerException(); ...}\> post)

Index Out Of Bounds:
\add(!#v = null &

#se >= #v.length | #se < 0 ==>)
\replacewith(\<{ .. throw new ArrIdxOOBException(); ...}\> post)

Array Store Exception:
\add(!#v = null &

#se < #v.length & #se >= 0 &
!arrayStoreValid(#v, #se0) ==>)

\replacewith(\<{ .. throw new ArrayStoreException(); ...}\> post)

Jochen Hoenicke (Software Engineering) Formal Methods for Java February 7, 2013 7 / 9

Abnormal termination by break

The handling of break statements is very similar to try-catch:

If the surrounding block has that label, the break is executed:
\find(\<{ .. #label: { break #label; #slist1 } ... }\> post)
\replacewith(\<{ }\> post)

If the surrounding block has not the right label the block is removed.
\find(\<{ .. #label2: { break #label; #slist1 } ... }\> post)
\replacewith(\<{ .. break #label; ... }\> post)

The same for try-catch blocks:
\find(\<{ .. try { break #label; #slist1 }

catch (#t #v) { #slist2 } ... }\> post)
\replacewith(\<{ .. break #label; ... }\> post)

Jochen Hoenicke (Software Engineering) Formal Methods for Java February 7, 2013 8 / 9

Loops with break/continue

break/continue statements are translated to labelled break.

rule loop unwind:

\find(\<{ .. while (#expr) {.... continue; break;} ... }\> post)
\replacewith(\<{ .. if (#expr) {

#lab1: {
#lab2: {

....
break #lab2;
....
break #lab1;
....

}
while (#expr) {.... continue; break;}

} } ... } \> post)

Jochen Hoenicke (Software Engineering) Formal Methods for Java February 7, 2013 9 / 9

