Formal Methods for Java Lecture 19: Proofs in Jahob

Jochen Hoenicke

Software Engineering Albert-Ludwigs-University Freiburg

Jan 8, 2013

Static Checking vs. Theorem Proving

Goal:

- finds bugs at compile-time,
- proves that there is no violation.

Static Checking:

- e.g. Jahob and ESC/Java
- fully automatic (after annotation)
- can only verify simple properties

Theorem Proving:

- Needs lot of manual interaction
- complete calculus, can verify any property.

Goals

- Improve the strength of the provable properties.
- Still fully automatic (after annotation).
- Have intermediate proof steps in annotation.

Paper:

• Karen Zee, Viktor Kuncak, and Martin Rinard. An integrated proof language for imperative programs. In ACM Conf. Programming Language Design and Implementation (PLDI), 2009.

Note command

We already know one command

note ℓ : *F*

which abbreviates

```
assert \ell : F; assume \ell : F
```

- ℓ is a label (or name) for the formula F
- When F cannot be proven Jahob tells that the check for ℓ failed.
- ℓ can also be used to tell the Jahob which formulas are relevant:

assert ${\it G}$ from ℓ

Why is this rule correct?

Correctness of Proof Commands

An incorrect program must not be verified succesfully.

If $P \rightarrow wp(S_1; \text{note } F; S_2, Q)$ then $P \rightarrow wp(S_1; S_2, Q)$

This is the case if we can proof that for all H

 $wp(note F, H) \rightarrow H$

The note *F* command is correct:

```
wp(\text{note } F, H) \leftrightarrow wp(\text{assert } F; \text{assume } F, H)\leftrightarrow F \land (F \to H)\leftrightarrow F \land H\rightarrow H
```

Proving implications

Suppose you want to argue that F implies G by a implication chain

```
F \to F_1 \to F_2 \to G.
```

In Jahob there is a special syntax:

assuming F in (note F_1 note F_2 note G)

This command adds the assumption

assume $F \to G$

General syntax of assuming

The general syntax is

```
assuming F in
( :
note G)
```

This is an abbreviation for

```
( assume F

:

assert G

assume false

assume F \rightarrow G

)
```

• : stands for arbitrary proof statements

The implication rule is correct, provided the proof statements used in between are correct.

$$\begin{split} & \textit{wp}((\text{assume } F; p; \text{assert } G; \text{assume false} \square \text{ assume } F \to G, H) \\ & \equiv (F \to \textit{wp}(p, G)) \land ((F \to G) \to H) \\ & \to [\text{assuming that proof statements } p \text{ are correct}] \\ & (F \to G) \land ((F \to G) \to H) \\ & \to H \end{split}$$

۱

Case Splits

One can split cases, e.g.

cases $x \ge 0, x < 0$ for $abs(x) \ge 0$

cases F_1, \ldots, F_n for G

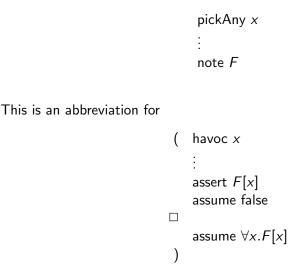
is an abbreviation for

assert $F_1 \lor \cdots \lor F_n$; assert $F_1 \to G$; ... assert $F_n \to G$; assume G

- Proof that F_1, \ldots, F_n are all possible cases.
- Proof for each case G separately.
- Assume G holds.

Proving Universal Quantifiers

To prove a universal quantified formula the syntax is



The inverse operation removes universal quantifiers:

```
instantiate \forall x.F[x] with t
```

This is an abbreviation for

assert $\forall x.F[x]$ assume F[t]

To prove an existential quantified formula the syntax is

witness t for $\exists x.F[x]$

This is an abbreviation for

assert F[t]assume $\exists x.F[x]$

Removing Existential Quantifiers

The syntax is

```
pickWitness x for F[x]

: where x does not occur in G

note G
```

This is an abbreviation for

```
( assert ∃x.F[x]
    havoc x
    assume F[x]
    :
    assert G
    assume false
    assume G
)
```