Contents & Goals

Last Lecture:

- Motivation: model-based development of things (houses, software) to cope with complexity, detect errors early
- Model-based (or -driven) Software Engineering
- UML Mode of the Lecture: Blueprint.

This Lecture:

- Educational Objectives: Capabilities for these tasks/questions:
 - Why is UML of the form it is?
 - Shall one feel bad if not using all diagrams during software development?
 - What is a signature, an object, a system state, etc.? What’s the purpose of signature, object, etc. in the course?
 - How do Basic Object System Signatures relate to UML class diagrams?

- Content:
 - Brief history of UML
 - Course map revisited
 - Basic Object System Signature, Structure, and System State
Why (of all things) UML?
Why (of all things) UML?

- Note: being a modelling languages doesn’t mean being graphical (or: being a visual formalism [Harel]).
- For instance, [Kastens and Büning, 2008] also name:
 - Sets, Relations, Functions
 - Terms and Algebras
 - Propositional and Predicate Logic
 - Graphs
 - XML Schema, Entity Relation Diagrams, UML Class Diagrams
 - Finite Automata, Petri Nets, UML State Machines

- **Pro**: visual formalisms are found appealing and easier to **grasp**. Yet they are not necessarily easier to **write**!
- **Beware**: you may meet people who dislike visual formalisms just for being graphical — maybe because it is easier to “trick” people with a meaningless picture than with a meaningless formula. More serious: it’s maybe easier to misunderstand a picture than a formula.
A Brief History of UML

- Boxes/lines and finite automata are used to visualise software for ages.
- **1970’s, Software Crisis**
 — Idea: learn from engineering disciplines to handle growing complexity.
 Languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams
- **Mid 1980’s: Statecharts** [Harel, 1987], **StateMate** [Harel et al., 1990]
- **Early 1990’s**, advent of **Object-Oriented**-Analysis/Design/Programming
 --- Inflation of notations and methods, most prominent:
 - **Object-Modeling Technique (OMT)** [Rumbaugh et al., 1990]
A Brief History of UML

- Boxes/lines are used to visualise software for ages.
- 1970’s, Software Crisis — Idea: learn from engineering disciplines to handle growing complexity.
 Languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams
- Mid 1980’s: Statecharts [Harel, 1987], StateMate [Harel et al., 1990]
- Early 1990’s, advent of Object-Oriented Analysis/Design/Programming — Inflation of notations and methods, most prominent:
 - Object-Modeling Technique (OMT) [Rumbaugh et al., 1990]
 - Booch Method and Notation [Booch, 1993]
A Brief History of UML

- Boxes/lines and finite automata are used to visualise software for ages.

- **1970’s, Software Crisis** TM
 — Idea: learn from engineering disciplines to handle growing complexity.
 Languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

- Mid 1980’s: Statecharts [Harel, 1987], StateMate TM [Harel et al., 1990]

- Early 1990’s, advent of Object-Oriented - Analysis/Design/Programming
 — Inflation of notations and methods, most prominent:
 - Object-Modeling Technique (OMT) [Rumbaugh et al., 1990]
 - Booch Method and Notation [Booch, 1993]
 - Object-Oriented Software Engineering (OOSE) [Jacobson et al., 1992]
 Each “persuasion” selling books, tools, seminars...

- Late 1990’s: joint effort UML 0.x, 1.x
 Standards published by Object Management Group (OMG), “international, open membership, not-for-profit computer industry consortium”.

- Since 2005: UML 2.x
Figure A.5 - The taxonomy of structure and behavior diagram

[Dobing and Parsons, 2006]
Common Expectations on UML

- Easily writeable, readable even by customers
- Powerful enough to bridge the gap between idea and implementation
- Means to tame complexity by separation of concerns (“views”)
- Unambiguous
- Standardised, exchangeable between modelling tools
- UML standard says how to develop software
- Using UML leads to better software
- ...

We will see...

Seriously: After the course, you should have an own opinion on each of these claims. In how far/in what sense does it hold? Why? Why not? How can it be achieved? Which ones are really only hopes and expectations? ...?
Course Map Revisited
Recall:

- **Overall aim**: a formal language for software blueprints.
- **Approach**:
 1. Common semantical domain.
 2. UML fragments as syntax.
 3. Abstract representation of diagrams.
 5. Assign meaning to diagrams.
 6. Define, e.g., consistency.
Figure 6.1 - A schematic of the UML semantic areas and their dependencies

[OMG, 2007b, 11]
Common Semantical Domain
Definition. A (Basic) Object System Signature is a quadruple

\[\mathcal{S} = (\mathcal{T}, \mathcal{C}, V, \text{atr}) \]

where

- \(\mathcal{T} \) is a set of (basic) types,
- \(\mathcal{C} \) is a finite set of classes,
- \(V \) is a finite set of typed attributes, i.e., each \(v \in V \) has type
 - \(\tau \in \mathcal{T} \) or
 - \(C_{0,1} \) or \(C_* \), where \(C \in \mathcal{C} \)
 (written \(v : \tau \) or \(v : C_{0,1} \) or \(v : C_* \)),
- \(\text{atr} : \mathcal{C} \rightarrow 2^V \) maps each class to its set of attributes.

Note: Inspired by OCL 2.0 standard [OMG, 2006], Annex A.
Basic Object System Signature Example

$$\mathcal{S} = (\mathcal{T}, \mathcal{C}, V, atr)$$ where

- (basic) types \(\mathcal{T} \) and classes \(\mathcal{C} \), (both finite),
- typed attributes \(V, \tau \) from \(\mathcal{T} \) or \(C_{0,1} \) or \(C_{\ast} \), \(C \in \mathcal{C} \),
- \(atr : \mathcal{C} \rightarrow 2^V \) mapping classes to attributes.

Example:

$$\mathcal{S}_0 = (\{\text{Int}\}, \{C, D\}, \{x : \text{Int}, p : C_{0,1}, n : C_{\ast}\}, \{C \mapsto \{p, n\}, D \mapsto \{x\}\})$$
Basic Object System Signature Another Example

\[\mathcal{I} = (\mathcal{T}, \mathcal{C}, V, atr) \] where

- (basic) types \(\mathcal{T} \) and classes \(\mathcal{C} \), (both finite),
- typed attributes \(V, \tau \) from \(\mathcal{T} \) or \(C_{0,1} \) or \(C_* \), \(C \in \mathcal{C} \),
- \(atr : \mathcal{C} \rightarrow 2^V \) mapping classes to attributes.

Example:

\[\mathcal{I} = (\{ \text{Int}, \text{Float} \}, \{ C : \text{Int}, D : \text{Float}, x : \text{Int} \}, \{ C : \{ C : x, y \}, D : \{ D : x, y \} \}) \]

Q: What about a class \(C \) with attribute \(x: \text{Int} \) and a class \(D \) with attribute \(x: \text{Float} \)?

A: Renamer consistently.
Definition. A Basic Object System Structure of

\[\mathcal{I} = (\mathcal{T}, \mathcal{C}, V, atr) \]

is a domain function \(D \) which assigns to each type a domain, i.e.

- \(\tau \in \mathcal{T} \) is mapped to \(D(\tau) \),
- \(C \in \mathcal{C} \) is mapped to an infinite set \(D(C) \) of (object) identities.

Note: Object identities only have the “=” operation; object identities of different classes are disjoint, i.e.

\[\forall C, D \in \mathcal{C} : C \neq D \rightarrow D(C) \cap D(D) = \emptyset. \]

- \(C_* \) and \(C_{0,1} \) for \(C \in \mathcal{C} \) are mapped to \(2^{D(C)} \).

We use \(D(C) \) to denote \(\bigcup_{C \in \mathcal{C}} D(C) \); analogously \(D(C_*) \).

Note: We identify objects and object identities, because both uniquely determine each other (cf. OCL 2.0 standard).
Basic Object System Structure Example

Wanted: a structure for signature

\[\mathcal{S}_0 = (\{\text{Int}\}, \{\text{C}, \text{D}\}, \{x : \text{Int}, p : C_{0,1}, n : C_*\}, \{\text{C} \mapsto \{p, n\}, \text{D} \mapsto \{x\}\}) \]

Recall: by definition, seek a \(\mathcal{D} \) which maps

- \(\tau \in \mathcal{I} \) to some \(\mathcal{D}(\tau) \),
- \(c \in \mathcal{C} \) to some identities \(\mathcal{D}(C) \) (infinite, disjoint for different classes),
- \(C_* \) and \(C_{0,1} \) for \(C \in \mathcal{C} \) to \(\mathcal{D}(C_{0,1}) = \mathcal{D}(C_*) = 2^{\mathcal{D}(C)} \).

\[
\begin{align*}
\mathcal{D}(\text{Int}) &= \mathbb{Z} \\
\mathcal{D}(\text{C}) &= \mathbb{N}^* \times \{C\} \cong \{1_c, 2_c, 3_c, \ldots\} \\
\mathcal{D}(\text{D}) &= \mathbb{N}^* \times \{D\} \cong \{1_D, 2_D, 3_D, \ldots\} \cong \{4_D, 5_D, \ldots\} \\
\mathcal{D}(C_{0,1}) = \mathcal{D}(C_*) &= 2^{\mathcal{D}(C)} \\
\mathcal{D}(D_{0,1}) = \mathcal{D}(D_*) &= 2^{\mathcal{D}(D)}
\end{align*}
\]
Definition. Let \mathcal{D} be a structure of $\mathcal{I} = (\mathcal{I}, \mathcal{C}, V, \text{atr})$. A system state of \mathcal{I} wrt. \mathcal{D} is a type-consistent mapping

$$\sigma : \mathcal{D}(\mathcal{C}) \rightarrow (V \rightarrow (\mathcal{D}(\mathcal{T}) \cup \mathcal{D}(\mathcal{C}^*))).$$

That is, for each $u \in \mathcal{D}(C), C \in \mathcal{C}$, if $u \in \text{dom}(\sigma)$

- $\text{dom}(\sigma(u)) = \text{atr}(C)$

- $(\sigma(u))(v) \in \mathcal{D}(\tau)$ if $v : \tau, \tau \in \mathcal{T}$

- $(\sigma(u))(v) \in \mathcal{D}(D^\ast)$ if $v : D_{0,1}$ or $v : D^\ast$ with $D \in \mathcal{C}$

We call $u \in \mathcal{D}(C)$ alive in σ if and only if $u \in \text{dom}(\sigma)$. We use $\Sigma^\mathcal{D}$ to denote the set of all system states of \mathcal{I} wrt. \mathcal{D}.
System State Example

Signature, Structure:

$$\mathcal{S}_0 = (\{\text{Int}\}, \{C, D\}, \{x : \text{Int}, p : C_{0,1}, n : C_*\}, \{C \mapsto \{p, n\}, D \mapsto \{x\}\})$$

$$\mathcal{D}(\text{Int}) = \mathbb{Z}, \quad \mathcal{D}(C) = \{1_C, 2_C, 3_C, \ldots\}, \quad \mathcal{D}(D) = \{1_D, 2_D, 3_D, \ldots\}$$

Wanted: $$\sigma : \mathcal{D}(C) \rightarrow (V \rightarrow (\mathcal{D}(\mathcal{T}) \cup \mathcal{D}(C_*)))$$ such that

- $$\text{dom}(\sigma(u)) = \text{atr}(C),$$
- $$\sigma(u)(v) \in \mathcal{D}(\tau)$$ if $$v : \tau, \tau \in \mathcal{T},$$
- $$\sigma(u)(v) \in \mathcal{D}(C_*)$$ if $$v : D_*$$ with $$D \in \mathcal{C}.$$
Signature, Structure:

\[S_0 = (\{\text{Int}\}, \{C, D\}, \{x : \text{Int}, p : C_{0,1}, n : C_*\}, \{C \mapsto \{p, n\}, D \mapsto \{x\}\}) \]

\[\mathcal{D}(\text{Int}) = \mathbb{Z}, \quad \mathcal{D}(C) = \{1_C, 2_C, 3_C, \ldots\}, \quad \mathcal{D}(D) = \{1_D, 2_D, 3_D, \ldots\} \]

Wanted: \(\sigma : \mathcal{D}(C) \rightarrow (V \rightarrow (\mathcal{D}(\mathcal{T}) \cup \mathcal{D}(C_*))) \) such that

- \(\text{dom}(\sigma(u)) = \text{atr}(C) \),
- \(\sigma(u)(v) \in \mathcal{D}(\tau) \) if \(v : \tau, \tau \in \mathcal{T} \),
- \(\sigma(u)(v) \in \mathcal{D}(C_*) \) if \(v : D_* \) with \(D \in \mathcal{C} \).

Concrete, explicit:

\[\sigma = \{1_C \mapsto \{p \mapsto \emptyset, n \mapsto \{5_C\}\}, 5_C \mapsto \{p \mapsto \emptyset, n \mapsto \emptyset\}, 1_D \mapsto \{x \mapsto 23\}\} \]

Alternative: symbolic system state

\[\sigma = \{c_1 \mapsto \{p \mapsto \emptyset, n \mapsto \{c_2\}\}, c_2 \mapsto \{p \mapsto \emptyset, n \mapsto \emptyset\}, d \mapsto \{x \mapsto 23\}\} \]

assuming \(c_1, c_2 \in \mathcal{D}(C), d \in \mathcal{D}(D), c_1 \neq c_2 \).
You Are Here.
\[\mathcal{I} = (\mathcal{I}, \mathcal{E}, V, \text{attr}) \]

\[M = (\Sigma \mathcal{I}, A, \mathcal{I} \rightarrow \text{SM}) \]

\[\pi = (\sigma_0, \varepsilon_0) \xrightarrow{\sigma_0, \text{Snd}_0} (\sigma_1, \varepsilon_1) \cdots \]

\[w_\pi = ((\sigma_i, \text{cons}_i, \text{Snd}_i))_{i \in \mathbb{N}} \]

\[G = (N, E, f) \]

\[C_D, SM \]

\[\varphi \in \text{OCL} \]

\[CD, SD \]

\[B = (Q_{SD}, q_0, A, \mathcal{I} \rightarrow_{SD}, F_{SD}) \]

\[\phi \in \text{OCL} \]

\[CD, SM \]

\[\mathcal{S} = (\mathcal{I}, \mathcal{C}, V, \text{attr}) \]

\[SM \]

\[\mathcal{S} = (\Sigma \mathcal{I}, A, \mathcal{I} \rightarrow \text{SM}) \]

\[\mathcal{I} \]

\[expr \]

\[CD, SD \]

\[\mathcal{J}, SD \]

\[\mathcal{I}, SD \]

\[\sigma_0, \varepsilon_0 \]

\[(\sigma_1, \varepsilon_1) \cdots \]

\[\phi \in \text{OCL} \]

\[\mathcal{I} \]

\[expr \]

\[CD, SM \]

\[\mathcal{S} = (\mathcal{I}, \mathcal{C}, V, \text{attr}) \]

\[SM \]

\[\varphi \in \text{OCL} \]

\[CD, SD \]

\[\mathcal{J}, SD \]

\[\mathcal{I}, SD \]

\[\phi \in \text{OCL} \]

\[CD, SM \]

\[\mathcal{S} = (\mathcal{I}, \mathcal{C}, V, \text{attr}) \]

\[SM \]

\[\varphi \in \text{OCL} \]

\[CD, SD \]

\[\mathcal{J}, SD \]

\[\mathcal{I}, SD \]

\[\phi \in \text{OCL} \]

\[CD, SM \]

\[\mathcal{S} = (\mathcal{I}, \mathcal{C}, V, \text{attr}) \]

\[SM \]

\[\varphi \in \text{OCL} \]

\[CD, SD \]

\[\mathcal{J}, SD \]

\[\mathcal{I}, SD \]

\[\phi \in \text{OCL} \]
References
References

