Sdtware Design, Modelling andAnalysisin UML

Ledure 10: Constructive Behaviour, Sate Machines Overview

201211-28

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Socktaking...

Have: Means to model the structure of the system.
« Class diagrams graphically, concisely describe sets of system states.

» OCL expressions logically state constraints/invariants on system states.

Want: Means to model behaviour of the system.
» Means to describe how system states evolve over time,
that is, to describe sets of sequences

. ﬂi ol-dias,
00,01, €5 Juod (maching shps b

of system states.

Contents & Goals

Last

Lecture:

= Completed discussion of modelling structure.

This

Lecture:

« Educational Objectives: Capabilities for following tasks/questions.

« Discuss the style of this class diagram.

« What's the difference between reflective and constructive descriptions of
behaviour?

+ What's the purpose of a behavioural model?

* What does this State Machine mean? What happens

« Can you please model the following behaviour.

« Content:

« Purposes of Behavioural Models
« Constructive vs. Reflective
« UML Core State Machines (first half)

What Can Be Purpases of Behavioural Models?

(We will discuss this in more detail in Lecture 22.)

Example: Pre-Image
(the UML model is supposed to be the blue-print for a software system).

A description of behaviour could serve the following purposes:

.

Require Behaviour.

“This sequence of inserting money and requesting and getting water must be
possible.”

(Otherwise the software for the vending machine is completely broken.)

Allow Behaviour.

fter(inserting money and choosing a drink) the drink is dispensed (if in stock).”
ists on taking the money first, that's a fair choice.)

(If the implementation i
Forbid Behaviour.
“This sequence of getting both, a water and all money back, must not be pos-
sible.” (Otherwise the software is broken.)

Modelli ng Behaviour

What Can Be Purpaoses of Behavioural Models?

(We will discuss this in more detail in Lecture 22.)

Example: Pre-Image Image
(the UML model is supposed to be the blue-print for a software system).

A description of behaviour could serve the following purposes:
“System definitely does th

« Require Behaviour.
“This sequence of inserting money and requesting and getting water must be
possible.”

(Otherwise the software for the vending machine is completely broken.)

« Allow Behaviour. “System does subset of this
“After jnserting money and choosing a drink} the drink is dispensed (if in stock).
(If the implementation insists on taking the money first, that's a fair choice.)
« Forbid Behaviour.

“This sequence of getting both, a water and all money back, must not be pos-

sible.” (Otherwise the software is broken.)

“System never does this

ly satisfied by doing nothing.

Note: the latter two are trivi;

Constructive \s. Refledive Descriptions

[Harel, 1997] proposes to distinguish constructive and reflective descriptions:

“A language is constructive if it contributes to the dynamic semantics
of the model. That is, its constructs contain information needed in
executing the model or in translating it into executable code.”

h can

A constructive description tells how things are computed (w
then be desired or undesired).

Other languages are reflective or assertive, and can be used by the
system modeler to capture parts of the thinking that go into building the
model — behavior included —, to derive and present views of the model,
statically or during execution, or to set constraints on behavior in
preparation for verification.”

A reflective description tells what shall or shall not be computed.

Note: No sharp boundaries!

UML State Machines: Overview

1077

Constructive UML

UML provides two visual formalisms for constructive description of behaviours:

.
We

Activity Diagrams

State-Machine Diagrams

(exemplary) focus on State-Machines because
somehow “practice proven” (in different flavours),
prevalent in embedded systems community,

indicated useful by [Dobing and Parsons, 2006] survey, and

Activity Diagram's intuition changed (between UML 1.x and 2.x) from
transition-system-like to petri-net-like..

Example state machine:

P

e \ P, Ao
Y s
: o0 Eln #0)/z = a + lin! &=
, Flz:=0 fni=0

87
UML State Machines
G0 En#0)/z:=z+1n!F
A

Bri

Note: there

ef History:

Rooted in Moore/Mealy machines, Transition Systems
[Harel, 1987]: Statecharts as a concise notation,
ntroduces in particular hierarchical states.
Manifest in tool Statemate [Harel et al., 1990] (simulation, code-generation):
nowadays also in Matlab/Simulink, etc

From UML Lx on: State Machines (i Stk (bué Disgians|

(not the official name, but understood: UML-Statecharts)
Late 1990's: tool Rha

with code-generation for state machines.

a common core, but each dialect interprets some constructs

subtly different [Crane and Dingel, 2007). (Would be too easy otherwise. ..)

11/

Course Map

Roadmap: Chrondogically

=
D, SM . peocL
"
S = (ZV, atr), SM capr
o ﬁmvf S

L s
E/u (52, Ay, —su)

Ly

.

(i)

(iv)

(

) What do we (have to) cover?

UML State Machine Diagrams Syntax

Def.: Signature with signals.
Def.: Core state machine.

to core state machines.

Semantics:
The Basic Causality Model

Def.: Ether (aka. event pool

Def.: System configuration.
Def.: Event.

Def.: Transformer.

Map UML State Machine Diagrams/

(ix) Def.: Transition system, computation.

(xi)

(

chine.

Later: Hierarchical state machines.

(x) Transition relation induced by core state m

Def.: step, run-to-completion step.

&

s
B =(Qsp.40, Az, =50, Fsp)
\

< e = (01, consy, Sndy) e

ghle dovt &.Vif

12/

UML State Machines: Syntax

Sgnaure With Sgnds

— 20121128 - Stmeyn -

Definition. A tuple
o2
S =(7,¢6,V, n?ghv &"a set of signals,
is called signature (with signals) if and only if

(7,¢4, V. atr)

is a signature (as before).

Note: Thus conceptually, a signal is a class and can have attributes of plain
type and associations.

13/

15/

. o
UML Sate-Machines: What Qoimrﬂm,\ma cover?

[stérrle, 2005] [A57) (S~

bt
nesk sk

14/
Core Sate Machine
Definition. ¥
A core state machine over signature . = (7, %, V, atrf'is a tuple
SM = (5, 50,~)
where
« S'is a non-empty, finite set of (basic) states,
« 89 € S is an initial state, 2 s
e s \\ak of sy st
+ and - /
Lk o, — CSx(8U{}) x Ezpry x Acty xS
_&E trigger guard action
is a labelled transition relation.
We assume a set Ezpr, of boolean expressions over . (for in-
stance OCL, may be something else) and a set Act . of actions.
16/74

UML State-Machines: What do we haveto cover?

[Strrle, 2005]

v

PP P
TSI " e edoratco S i SR
e e e e

e ot e
“*| Proven approach: Seireh
omi| Start out simple, consider the essence, namely ﬂii;
S| o basic/leaf states e
i e transitions, ot g

then extend to cover the complicated rest.

e

14/74
From UML to Core State Machines: By Example
UML state machine diagram SM: vt e i QX&
annot
achin
—— M/ —
annot =\ ([(event)[" (event)]" ['[' (guard) '] X[/ [action)]3
with
o event € &,
o guard € Eapr, (default: true, assumed to be in Expr)
o action € Acty (default: skip, assumed to be in Act)
maps to
H, SM(SM) = ({s1, mi,/ﬁ\. (s1, event, guard, action, s3)
E s s0 e
0 17/

Annaations and Defaults in the Sandad

Sate-Machines belongto Classes, A fake &y Thecls

er the syntax of transition annotations:

[tevent)] " (event)]] ['] (guard) ‘'] [/’ Kaction)]]

and let's play a bit with the defaults:

H gl TN
Awnidehin. /
B/

whe)hf / act

E [act
O 1

-

PRI

e, skip
—, b, skp
E, tne, skip
_ e, ack
E, Ae , &
Ei @l af

In the standard, the syntax is even more elaborate:

 B(v) — when consuming E in object u,

attribute v of u is assigned the

corresponding attribute of F.

« B(v:) — similar, but v is a local variable,

scope is the transition

References

ol

3%«\? povies 5K o

2z

10

18/

In the following, we assume that a UML models consists of a set ¢€'% of class
diagrams and a set .%# of state chart diagrams (each comprising one state
machines SM).

Furthermore, we assume g=fj that each state machine SM € .7/ is
associated with a class Csm € €(5).

For simplicity, we even assume a bijection, i.e. we assume that each class
C € ¢(#) has a state machine SMc and that its class Csug. is C.

P e bl gt
SMao := ({s0}, s04(s0, -, true, skip, so)p.

If not explicitly given, then this one

We'll see later that, semantically, this choice does no harm.

Intuition 1: SMc describes the behaviour of the instances of class C'.

Intuition 2: Each instance of class C' executes SMc kut widh « leal " pgine

Note: we don't consider multiple state machines per class.
Because later (when we have AND-states) we'll see that this case can be viewed as

a single state machine with as many AND-states. 1o

References

T3

[Crane and Dingel, 2007] Crane, M. L. and Dingel, J. (2007). UML vs. classical vs.
rhapsody statecharts: not all models are created equal. Software and Systems
Modeling, 6(4):415-435

[Dobing and Parsons, 2006] Dobing, B. and Parsons, J. (2006). How UML is used.
Communications of the ACM, 49(5):109-114.

[Harel, 1987] Harel, D. (1987). Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8(3):231-274.

[Harel, 1997] Harel, D. (1997). Some thoughts on statecharts, 13 years later. In
Grumberg, O., editor, CAV, volume 1254 of LNCS, pages 226-231. Springer-Verlag

[Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object modeling
with statecharts. /EEE Computer, 30(7):31-42.

[Harel et al., 1990] Harel, D., Lachover, H., et al. (1990). Statemate: A working
environment for the development of complex reactive systems. IEEE Transactions
on Software Engineering, 16(4):403-414.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version
2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, <m_‘m_o:§
2.1.2. Technical Report formal/07-11-02. -

-
¢ Aﬁgm_.»g A?W!s) Wy e X
Xt P
| g€
os\"

- (13,54 €7,

h&d ot we ¥
Aeby=fhp, o, 7. 8]

M= (F5.52,5, 543, 54,
{ (s1,- e, sk, 1),
(51, €, wot Alltntiprelle), ' T57),
Mm_ﬁ (%, w0, 53,

mﬁr?s&i@f&.
§¢nial, enty Frof,

e

7 (474, &5})

ATH

