Software Design, Modelling and Analysis in UML

Lecture 14: Hierarchical State Machines I

2012-12-19

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany
Contents & Goals

Last Lecture:

- RTC-Rules: Discard, Dispatch, Commence.

This Lecture:

- **Educational Objectives:** Capabilities for following tasks/questions.
 - What does this State Machine mean? What happens if I inject this event?
 - Can you please model the following behaviour.
 - What is: initial state.
 - What does this **hierarchical** State Machine mean? What may happen if I inject this event?
 - What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state, . . .

- **Content:**
 - Step, RTC, Divergence
 - Putting It All Together
 - Rhapsody Demo
 - Hierarchical State Machines Syntax
Step and Run-to-completion Step
Notions of Steps: The Step

Note: we call one evolution \((\sigma, \varepsilon) \xrightarrow{u} (\sigma', \varepsilon')\) a **step**.

Thus in our setting, a step **directly corresponds** to

one object (namely \(u\)) takes a **single transition** between regular states.

(We have to extend the concept of “single transition” for hierarchical state machines.)

That is: We’re going for an interleaving semantics without true parallelism.
Notions of Steps: The Run-to-Completion Step

What is a run-to-completion step...?

- **Intuition**: a maximal sequence of steps, where the first step is a dispatch step and all later steps are commence steps.
- **Note**: one step corresponds to one transition in the state machine.

A run-to-completion step is in general not syntactically definable — one transition may be taken multiple times during an RTC-step.

Example:

\[E[x > 0] / \]

\[\sigma: \]

\[\begin{array}{c}
 : C \\
 x = 2
\end{array} \]

\[\varepsilon: \]

\[E \text{ for } u \]

\[/x := x - 1 \]
Proposal: Let

\[(\sigma_0, \varepsilon_0) \xrightarrow{(cons_0, Snd_0)} u_0 \quad \ldots \quad u_{n-1} \xrightarrow{(cons_{n-1}, Snd_{n-1})} (\sigma_n, \varepsilon_n), \quad n > 0,\]

be a finite (!), non-empty, maximal, consecutive sequence such that

- object \(u\) is alive in \(\sigma_0\),
- \(u_0 = u\) and \((cons_0, Snd_0)\) indicates dispatching to \(u\), i.e. \(cons = \{(u, \vec{v} \mapsto \vec{d})\}\),
- there are no receptions by \(u\) in between, i.e.

\[cons_i \cap \{u\} \times Evs(\mathcal{E}, \mathcal{D}) = \emptyset, i > 1,\]

- \(u_{n-1} = u\) and \(u\) is stable only in \(\sigma_0\) and \(\sigma_n\), i.e.

\[\sigma_0(u)(\text{stable}) = \sigma_n(u)(\text{stable}) = 1 \quad \text{and} \quad \sigma_i(u)(\text{stable}) = 0 \quad \text{for} \quad 0 < i < n,\]

Let \(0 = k_1 < k_2 < \cdots < k_N = n\) be the maximal sequence of indices such that \(u_{k_i} = u\) for \(1 \leq i \leq N\). Then we call the sequence

\[(\sigma_0(u) =) \quad \sigma_{k_1}(u), \sigma_{k_2}(u) \ldots, \sigma_{k_N}(u) \quad (= \sigma_{n-1}(u))\]

a (!) run-to-completion computation of \(u\) (from (local) configuration \(\sigma_0(u)\)).
Divergence

We say, object \(u \) **can diverge** on reception \(cons \) from (local) configuration \(\sigma_0(u) \) if and only if there is an infinite, consecutive sequence

\[
(\sigma_0, \varepsilon_0) \xrightarrow{\text{(cons}_0, \text{Snd}_0)} (\sigma_1, \varepsilon_1) \xrightarrow{\text{(cons}_1, \text{Snd}_1)} \ldots
\]

such that \(u \) doesn’t become stable again.

- **Note**: disappearance of object not considered in the definitions. By the current definitions, it's **neither divergence nor an RTC-step**.
Run-to-Completion Step: Discussion.

What people may dislike on our definition of RTC-step is that it takes a global and non-compositional view. That is:

- In the projection onto a single object we still see the effect of interaction with other objects.
- Adding classes (or even objects) may change the divergence behaviour of existing ones.
- Compositional would be: the behaviour of a set of objects is determined by the behaviour of each object “in isolation”.

Our semantics and notion of RTC-step doesn’t have this (often desired) property.

Can we give (syntactical) criteria such that any global run-to-completion step is an interleaving of local ones?

Maybe: Strict interfaces.

(A): Refer to private features only via “self”.
(Recall that other objects of the same class can modify private attributes.)

(B): Let objects only communicate by events, i.e. don’t let them modify each other’s local state via links at all.

(Proof left as exercise...)
Putting It All Together
The Missing Piece: Initial States

Recall: a labelled transition system is \((S, \rightarrow, S_0)\). We have

- \(S\): system configurations \((\sigma, \varepsilon)\)
- \(\rightarrow\): labelled transition relation \((\sigma, \varepsilon) \xrightarrow{(\text{cons}, \text{Snd})} (\sigma', \varepsilon')\).

Wanted: initial states \(S_0\).

Proposal:
Require a (finite) set of **object diagrams** \(\mathcal{OD}\) as part of a UML model

\[(\mathcal{CD}, \mathcal{SM}, \mathcal{OD})\].

And set

\[S_0 = \{(\sigma, \varepsilon) \mid \sigma \in G^{-1}(\mathcal{OD}), \mathcal{OD} \in \mathcal{OD}, \varepsilon \text{ empty}\}\].

Other Approach: (used by Rhapsody tool) multiplicity of classes.
We can read that as an abbreviation for an object diagram.
The semantics of the UML model

\[M = (CD, SM, OD) \]

where

- some classes in \(CD \) are stereotyped as ‘signal’ (standard), some signals and attributes are stereotyped as ‘external’ (non-standard),
- there is a 1-to-1 relation between classes and state machines,
- \(OD \) is a set of object diagrams over \(CD \),

is the transition system \((S, \rightarrow, S_0) \) constructed on the previous slide.

The computations of \(M \) are the computations of \((S, \rightarrow, S_0) \). (stated via initial system configuration)
Let $M = (CD, SM, OD)$ be a UML model.

We call M consistent iff, for each OCL constraint $expr \in Inv(CD)$,
$\sigma \models expr$ for each “reasonable point” (σ, ε) of computations of M.

Note: we could define $Inv(SM)$ similar to $Inv(CD)$.

Pragmatics:

- **In UML-as-blueprint mode,** if SM doesn’t exist yet, then $M = (CD, \emptyset, OD)$ is typically asking the developer to provide SM such that $M' = (CD, SM, OD)$ is consistent.

 If the developer makes a mistake, then M' is inconsistent.

- **Not common:** if SM is given, then constraints are also considered when choosing transitions in the RTC-algorithm. In other words: even in presence of mistakes, the SM never move to inconsistent configurations.
Contemporary UML Modelling Tools
Hierarchical State Machines
UML State-Machines: What do we have to cover?

Wenn der Endzustand eines Zustandsautomaten erreicht wird, wird die Region beendet, in der der Endzustand liegt.

Protokollzustandsautomaten beschreiben das Verhalten von Softwaresystemen, Nutzflächen oder technischen Geräten.

Ein komplexer Zustand mit einer Region.

Der Anfangszustand markiert den voreingestellten Startpunkt von „Boarding“ bzw. „Bordkarte einlesen“.

Das Zeiteignis after(10s) löst einen Abbruch von „Bordkarte einlesen“ aus.

Der Gedächtniszustand sorgt dafür, dass nach dem Wiederaufnehmen der gleiche Zustand wie vor dem Aussetzen eingenommen wird.

Ein Eintrittspunkt definiert, dass ein komplexer Zustand an einer anderen Stelle betreten wird, als durch den Anfangszustand definiert ist.

Ein Zustand löst von sich aus bestimmte Ereignisse aus:
- entry beim Betreten;
- do während des Aufenthaltes;
- completion beim Erreichen des Endzustandes einer Unter-Zustandsmaschine
- exit beim Verlassen.

Diese und andere Ereignisse können als Auslöser für Aktivitäten herangezogen werden.

Anmelden() / abmelden() / angemeldet / abgemeldet

Einvernehmen von Protokollzustandsautomaten ermöglicht, regular Beendigung löst ein completion-Ereignis aus.

Eintrittspunkt definiert, dass ein komplexer Zustand an einer anderen Stelle betreten wird, als durch den Anfangszustand definiert ist.

Ein Zustand löst von sich aus bestimmte Ereignisse aus:
- entry beim Betreten;
- do während des Aufenthaltes;
- completion beim Erreichen des Endzustandes einer Unter-Zustandsmaschine
- exit beim Verlassen.

Diese und andere Ereignisse können als Auslöser für Aktivitäten herangezogen werden.

The Full Story

UML distinguishes the following **kinds of states**:

<table>
<thead>
<tr>
<th>States</th>
<th>Example</th>
<th>Sub-machine State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composite State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **pseudo-state**
 - initial
 - (shallow) history
 - deep history
 - fork/join
 - junction, choice
 - entry point
 - exit point
 - terminate

- **submachine state**
 - $S : s$
Representing All Kinds of States

- Until now:

\[(S, s_0, \rightarrow), \quad s_0 \in S, \rightarrow \subseteq S \times (\mathcal{E} \cup \{-\}) \times \text{Expr}_\mathcal{G} \times \text{Act}_\mathcal{G} \times S\]
Representing All Kinds of States

- Until now:
 \[(S, s_0, \rightarrow), \quad s_0 \in S, \rightarrow \subseteq S \times (\mathcal{E} \cup \{-\}) \times \text{Expr} \times \text{Act} \times S\]

- From now on: (hierarchical) state machines
 \[(S, \text{kind}, \text{region}, \rightarrow, \psi, \text{annot})\]
Representing All Kinds of States

- **Until now:**
 \[(S, s_0, \rightarrow), \quad s_0 \in S, \rightarrow \subseteq S \times (\mathcal{E} \cup \{_\}) \times \text{Expr}_{\mathcal{G}} \times \text{Act}_{\mathcal{G}} \times S\]

- **From now on:** (hierarchical) state machines
 \[(S, \text{kind}, \text{region}, \rightarrow, \psi, \text{annot})\]

where

- \(S \supseteq \{\text{top}\}\) is a finite set of states \(\text{(as before)},\)
- \(\text{kind} : S \rightarrow \{\text{st, init, fin, shist, dhist, fork, join, junc, choi, ent, exi, term}\}\) is a function which labels states with their \text{kind}, \(\text{(new)}\)
- \(\text{region} : S \rightarrow 2^2^S\) is a function which characterises the \text{regions} of a state, \(\text{(new)}\)
- \(\rightarrow\) is a set of transitions, \(\text{(changed)}\)
- \(\psi : (\rightarrow) \rightarrow 2^S \times 2^S\) is an \text{incidence function}, and \(\text{(new)}\)
- \(\text{annot} : (\rightarrow) \rightarrow (\mathcal{E} \cup \{_\}) \times \text{Expr}_{\mathcal{G}} \times \text{Act}_{\mathcal{G}}\) provides an annotation for each transition. \(\text{(new)}\)

\((s_0\) is then redundant — replaced by proper state (!) of kind ‘init’.)
From UML to Hierarchical State Machines: By Example

\[(S, \text{kind}, \text{region}, \rightarrow, \psi, \text{annot})\]

<table>
<thead>
<tr>
<th>Kind</th>
<th>Example</th>
<th>(\in S)</th>
<th>\text{kind}</th>
<th>\text{region}</th>
</tr>
</thead>
<tbody>
<tr>
<td>simple state</td>
<td></td>
<td>(s)</td>
<td>(st)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>final state</td>
<td></td>
<td>(q)</td>
<td>(\text{fin})</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>composite state</td>
<td></td>
<td>(s)</td>
<td>(st)</td>
<td>({{s_1, s_2, s_3}})</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td>(s)</td>
<td>(st)</td>
<td>({{s_1, s_1', s_2}}, {s_2, s_2'}, {s_3, s_3'}})</td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td>(s)</td>
<td>(st)</td>
<td>({{s_1, s_1', s_3}}, {s_2, s_2'}, {s_3, s_3'}})</td>
</tr>
<tr>
<td>submachine state</td>
<td></td>
<td>(s)</td>
<td>(st)</td>
<td>({\})</td>
</tr>
<tr>
<td>pseudo-state</td>
<td></td>
<td>(q)</td>
<td>\init (\ldots)</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>

\((s, \text{kind}(s))\) for short
DON’T!

\[tr[gd]/act \]

DON’T!

\(s \)

\(\text{annot} \)

... translates to \((S, \text{kind}, \text{region}, \rightarrow, \psi, \text{annot}) = \)

\[
(S, \text{kind}, \{\{\text{top}, \text{st}\}, \{s_1, \text{init}\}, \{s, \text{st}\}, \{s_2, \text{fin}\}\},
\{\text{top} \mapsto \{\{s_1, s, s_2\}\}, s_1 \mapsto \emptyset, s \mapsto \emptyset, s_2 \mapsto \emptyset\},
\{\text{region} \mapsto \{\{t_1, t_2\}\}, t_1 \mapsto (\{s_1\}, \{s\}), t_2 \mapsto (\{s\}, \{s_2\})\},
\{\psi \mapsto \{t_1 \mapsto (\text{tr}, \text{gd}, \text{act}), t_2 \mapsto \text{annot}\}\},
\{\text{annot} \mapsto \}\)
\]
Well-Formedness: Regions (follows from diagram)

<table>
<thead>
<tr>
<th>∈ S</th>
<th>kind</th>
<th>region $\subseteq 2^S$, $S_i \subseteq S$</th>
<th>child $\subseteq S$</th>
</tr>
</thead>
<tbody>
<tr>
<td>simple state</td>
<td>s</td>
<td>st</td>
<td>\emptyset</td>
</tr>
<tr>
<td>final state</td>
<td>s</td>
<td>fin</td>
<td>\emptyset</td>
</tr>
<tr>
<td>composite state</td>
<td>s</td>
<td>st</td>
<td>${S_1, \ldots, S_n}$, $n \geq 1$</td>
</tr>
<tr>
<td>pseudo-state</td>
<td>s</td>
<td>$init, \ldots$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>implicit top state</td>
<td>top</td>
<td>st</td>
<td>${S_1}$</td>
</tr>
</tbody>
</table>

- Each state (except for top) lies in exactly one region,
- States $s \in S$ with $kind(s) = st$ **may comprise** regions.
 - No region: simple state.
 - One region: OR-state.
 - Two or more regions: AND-state.
- Final and pseudo states **don't comprise** regions.
- The region function induces a **child** function.
Well-Formedness: Initial State (requirement on diagram)

- Each non-empty region has a reasonable initial state and at least one transition from there, i.e.
 - for each $s \in S$ with $\text{region}(s) = \{S_1, \ldots, S_n\}$, $n \geq 1$, for each $1 \leq i \leq n$,
 - there exists exactly one initial pseudo-state $(s^i_1, \text{init}) \in S_i$ and at least one transition $t \in \rightarrow$ with s^i_1 as source,
 - and such transition’s target s^i_2 is in S_i, and (for simplicity!) $\text{kind}(s^i_2) = \text{st}$, and $\text{annot}(t) = (_, \text{true}, \text{act})$.

- No ingoing transitions to initial states.

- No outgoing transitions from final states.

Recall:

\[
\text{tr}[gd]/\text{act}
\]

\[
\text{don’t!}
\]

\[
\text{don’t!}
\]

\[
\text{don’t!}
\]

\[
\text{don’t!}
\]
Plan

<table>
<thead>
<tr>
<th>simple state</th>
<th>example</th>
<th>composite state</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>entry/act_1^entry</td>
<td>initial</td>
<td>entry/act_1^entry</td>
</tr>
<tr>
<td>(shallow) history</td>
<td>do/act_1^do</td>
<td>deep history</td>
<td>do/act_1^do</td>
</tr>
<tr>
<td>fork/join</td>
<td>exit/act_1^exit</td>
<td>junction, choice</td>
<td>exit/act_1^exit</td>
</tr>
<tr>
<td>entry point</td>
<td>E_1/act_E_1</td>
<td>entry point</td>
<td>E_1/act_E_1</td>
</tr>
<tr>
<td>exit point</td>
<td>\ldots E_n/act_E_n</td>
<td>exit point</td>
<td>\ldots E_n/act_E_n</td>
</tr>
<tr>
<td>terminate</td>
<td>\textbf{OR}</td>
<td>terminate</td>
<td>\textbf{OR}</td>
</tr>
<tr>
<td>submachine state</td>
<td>\textbf{AND}</td>
<td>\textbf{AND}</td>
<td>\textbf{AND}</td>
</tr>
</tbody>
</table>

- Initial pseudostate, final state.
- Composite states.
- Entry/do/exit actions, internal transitions.
- History and other pseudostates, the rest.
Initial Pseudostates and Final States
Initial Pseudostate

Principle:

- when entering a region **without** a specific destination state,
- then go to a state which is destination of an initiation transition,
- execute the action of the chosen initiation transitions **between** exit and entry actions.
Initial Pseudostate

Principle:
- when entering a region *without* a specific destination state,
- then go to a state which is destination of an initiation transition,
- execute the action of the chosen initiation transitions *between* exit and entry actions.

Special case: the region of *top*.
- If class C has a state-machine, then “create-C transformer” is the concatenation of
 - the transformer of the “constructor” of C (here not introduced explicitly) and
 - a transformer corresponding to one initiation transition of the top region.
Towards Final States: Completion of States

- Transitions without trigger can **conceptionally** be viewed as being sensitive for the “completion event”.

- Dispatching (here: E) **can then alternatively** be **viewed** as
Towards Final States: Completion of States

- Transitions without trigger can **conceptionally** be viewed as being sensitive for the “completion event”.

- Dispatching (here: \(E \)) **can then alternatively** be **viewed** as

 (i) fetch event (here: \(E \)) from the ether,
Towards Final States: Completion of States

- Transitions without trigger can **conceptionally** be viewed as being sensitive for the “completion event”.

- Dispatching (here: \(E\)) **can then alternatively** be viewed as

 (i) fetch event (here: \(E\)) from the ether,

 (ii) take an enabled transition (here: to \(s_2\)).
Towards Final States: Completion of States

- Transitions without trigger can **conceptionally** be viewed as being sensitive for the “completion event”.

- Dispatching (here: E) **can then alternatively** be **viewed** as

 (i) fetch event (here: E) from the ether,

 (ii) take an enabled transition (here: to s_2),

 (iii) remove event from the ether,
Towards Final States: Completion of States

- Transitions without trigger can **conceptionally** be viewed as being sensitive for the “completion event”.

- Dispatching (here: E) **can then alternatively** be **viewed** as

 (i) fetch event (here: E) from the ether,

 (ii) take an enabled transition (here: to s_2),

 (iii) remove event from the ether,

 (iv) after having finished entry and do action of current state (here: s_2) — the state is then called **completed** —,
Towards Final States: Completion of States

- Transitions without trigger can **conceptionally** be viewed as being sensitive for the “completion event”.

- Dispatching (here: E) **can then alternatively** be **viewed** as

 (i) fetch event (here: E) from the ether,

 (ii) take an enabled transition (here: to s_2),

 (iii) remove event from the ether,

 (iv) after having finished entry and do action of current state (here: s_2) — the state is then called **completed** —,

 (v) raise a **completion event** — with strict priority over events from ether!
Towards Final States: Completion of States

- Transitions without trigger can *conceptionally* be viewed as being sensitive for the “completion event”.

- Dispatching (here: \(E \)) *can then alternatively* be viewed as

 (i) fetch event (here: \(E \)) from the ether,

 (ii) take an enabled transition (here: to \(s_2 \)),

 (iii) remove event from the ether,

 (iv) after having finished entry and do action of current state (here: \(s_2 \)) — the state is then called *completed* —,

 (v) raise a *completion event* — with strict priority over events from ether!

 (vi) if there is a transition enabled which is sensitive for the completion event,
 - then take it (here: \((s_2, s_3)\)).
 - otherwise become stable.
Final States

- If
 - a step of object u moves u into a final state (s, fin), and
 - all sibling regions are in a final state,
then (conceptionally) a completion event for the current composite state s is raised.
Final States

• If
 • a step of object \(u \) moves \(u \) into a final state \((s, \text{fin})\), and
 • all sibling regions are in a final state,
then (conceptionally) a completion event for the current composite state \(s \) is raised.

• If there is a transition of a parent state (i.e., inverse of child) of \(s \) enabled which is sensitive for the completion event,
 • then take that transition,
 • otherwise kill \(u \)
\(\sim \) adjust (2.) and (3.) in the semantics accordingly
Final States

- If
 - a step of object u moves u into a final state (s, fin), and
 - all sibling regions are in a final state,
then (conceptionally) a completion event for the current composite state s is raised.

- If there is a transition of a parent state (i.e., inverse of child) of s enabled which is sensitive for the completion event,
 - then take that transition,
 - otherwise kill u

\leadsto adjust (2.) and (3.) in the semantics accordingly

- **One consequence**: u never survives reaching a state (s, fin) with $s \in \text{child}(\text{top})$.
Final States

- If
 - a step of object u moves u into a final state (s, fin), and
 - all sibling regions are in a final state,
 then (conceptionally) a completion event for the current composite state s is raised.

- If there is a transition of a parent state (i.e., inverse of child) of s enabled which is sensitive for the completion event,
 - then take that transition,
 - otherwise kill u

\leadsto adjust (2.) and (3.) in the semantics accordingly

- One consequence: u never survives reaching a state (s, fin) with $s \in \text{child}(\text{top})$.

- Now: in Core State Machines, there is no parent state.

- Later: in Hierarchical ones, there may be one.
Composite States
(formalisation follows [?])
Composite States

- In a sense, composite states are about **abbreviation, structuring**, and **avoiding redundancy**.

- Idea: in Tron, for the Player’s Statemachine, instead of

```
\begin{tikzpicture}
  \node [state] {n};
  \node [state, below left of=n] {w};
  \node [state, right of=n] {e};
  \node [state, below of=e] {s};
  \node [state, below of=s] {resigned};

  \path [->, >=stealth, thick]
    (n) edge [loop above] node {X/} (n)
    (n) edge [bend left, above] node {X/} (w)
    (n) edge [bend right, above] node {X/} (e)
    (n) edge [bend left, below] node {X/} (s)
    (n) edge [bend right, below] node {X/} (resigned)
    (w) edge [loop left] node {X/} (w)
    (e) edge [loop right] node {X/} (e)
    (s) edge [loop below] node {X/} (s)
    (resigned) edge [loop below] node {X/} (resigned);
\end{tikzpicture}
```
Composite States

- In a sense, composite states are about **abbreviation, structuring**, and **avoiding redundancy**.

- Idea: in Tron, for the Player’s Statemachine, instead of

```latex
\begin{tikzpicture}
  \node [state] (n) {n};
  \node [state] (w) [below left of=n] {w};
  \node [state] (e) [below right of=n] {e};
  \node [state] (s) [below left of=e] {s};
  \node [state] (resigned) [below left of=s] {resigned};
  \draw [->] (n) -- (w) node [midway, above] {X/};
  \draw [->] (n) -- (e) node [midway, above] {X/};
  \draw [->] (n) -- (s) node [midway, above] {X/};
  \draw [->] (n) -- (resigned) node [midway, above] {X/};
  \draw [->] (w) -- (n) node [midway, above] {X/};
  \draw [->] (w) -- (e) node [midway, above] {X/};
  \draw [->] (w) -- (s) node [midway, above] {X/};
  \draw [->] (w) -- (resigned) node [midway, above] {X/};
  \draw [->] (e) -- (n) node [midway, above] {X/};
  \draw [->] (e) -- (w) node [midway, above] {X/};
  \draw [->] (e) -- (s) node [midway, above] {X/};
  \draw [->] (e) -- (resigned) node [midway, above] {X/};
  \draw [->] (s) -- (n) node [midway, above] {X/};
  \draw [->] (s) -- (w) node [midway, above] {X/};
  \draw [->] (s) -- (e) node [midway, above] {X/};
  \draw [->] (s) -- (resigned) node [midway, above] {X/};
  \draw [->] (resigned) -- (n) node [midway, above] {X/};
  \draw [->] (resigned) -- (w) node [midway, above] {X/};
  \draw [->] (resigned) -- (e) node [midway, above] {X/};
  \draw [->] (resigned) -- (s) node [midway, above] {X/};
\end{tikzpicture}
```
Composite States

and instead of

\[f_{ast}N \]

\[fW \]

\[w \]

\[e \]

\[fS \]

\[n \]
Composite States

and instead of

\[f_{\text{ast}N} \]

\[F/ \]

\[n \]

\[F/ \]

\[fE \]

\[w \]

\[e \]

\[fW \]

\[fS \]

write

\[\text{slow} \]

\[F/ \]

\[F/ \]

\[f_{\text{ast}} \]
Recall: Syntax

translates to

\[
\begin{align*}
&\{ (top, \text{st}), (s, \text{st}), (s_1, \text{st})(s'_1, \text{st})(s_2, \text{st})(s'_2, \text{st})(s_3, \text{st})(s'_3, \text{st}) \}, \\
&S, \text{kind} \\
&\{ top \mapsto \{ s \}, s \mapsto \{ \{ s_1, s'_1 \}, \{ s_2, s'_2 \}, \{ s_3, s'_3 \} \}, \ s_1 \mapsto \emptyset, \ s'_1 \mapsto \emptyset, \ldots \}, \\
&\text{region} \\
&\rightarrow, \psi, \text{annot}
\end{align*}
\]
For brevity, we always consider transitions with (possibly) multiple sources and targets, i.e.

\[\psi : (\rightarrow) \rightarrow (2^S \setminus \emptyset) \times (2^S \setminus \emptyset) \]

For instance,

\[
\begin{align*}
 s_1 & \rightarrow s_2 \\
 s_1 & \rightarrow s_3 \\
 s_4 & \rightarrow s_5 \\
 s_4 & \rightarrow s_6
\end{align*}
\]

translates to

\[
(S, \text{kind}, \text{region}, \{t_1\}, \{t_1 \mapsto (\{s_2, s_3\}, \{s_5, s_6\})\}, \{t_1 \mapsto (\text{tr, gd, act})\})
\]

Naming convention: \(\psi(t) = (\text{source}(t), \text{target}(t)) \).
Composite States: Blessing or Curse?

- what may happen on E?
- what may happen on E, F?
- can E, G kill the object?
- ...

The diagram shows states s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8 connected with transitions labeled E, F, and G. The states and transitions represent possible scenarios and outcomes within the context of composite states.
States:
- what are **legal state configurations**?
- what is the type of the implicit \(st \) attribute?

Transitions:
- what are **legal** transitions?
- when is a transition enabled?
- what effects do transitions have?

- what may happen on \(E \)?
- what may happen on \(E, F \)?
- can \(E, G \) kill the object?
- ...

Composite States: Blessing or Curse?

- \(s_1 \) \(\xrightarrow{E/} s_2 \) \(\xrightarrow{F/} s_3 \) \(\xrightarrow{F/} s_4 \) \(\xrightarrow{[true]/} s_5 \) \(\xrightarrow{E/} s_6 \) \(\xrightarrow{G/} \)
The type of st is from now on a set of states, i.e. $st : 2^S$

A set $S_1 \subseteq S$ is called (legal) state configurations if and only if:

- $\text{top} \in S_1$, and
- with each state $s \in S_1$ that has a non-empty region $\emptyset \neq R \in \text{region}(s)$, exactly one (non pseudo-state) child of s is in S_1, i.e.

$$|\{s \in R \mid \text{kind}(s) \in \{st, fin\}\} \cap S_1| = 1.$$
State Configuration

- The type of \(st \) is from now on **a set of** states, i.e. \(st : 2^S \)
- A set \(S_1 \subseteq S \) is called **(legal) state configurations** if and only if
 - \(top \in S_1 \), and
 - with each state \(s \in S_1 \) that has a non-empty region \(\emptyset \neq R \in \text{region}(s) \), exactly one (non pseudo-state) child of \(s \) is in \(S_1 \), i.e.
 \[
 |\{ s \in R \mid \text{kind}(s) \in \{st, fin\} \} \cap S_1 | = 1.
 \]
- **Examples:**

![State Configuration Diagrams](image-url)
A Partial Order on States

The substate- (or child-) relation induces a partial order on states:

- $\text{top} \leq s$, for all $s \in S$,
- $s \leq s'$, for all $s' \in \text{child}(s)$,
- transitive, reflexive, antisymmetric,
- $s' \leq s$ and $s'' \leq s$ implies $s' \leq s''$ or $s'' \leq s'$.
A Partial Order on States

The substate- (or child-) relation induces a partial order on states:

- top \leq s, for all \(s \in S \),
- \(s \leq s' \), for all \(s' \in \text{child}(s) \),
- transitive, reflexive, antisymmetric,
- \(s' \leq s \) and \(s'' \leq s \) implies \(s' \leq s'' \) or \(s'' \leq s' \).
The **least common ancestor** is the function \(lca : 2^S \rightarrow S \) such that

- The states in \(S_1 \) are (transitive) children of \(lca(S_1) \), i.e.
 \[
 lca(S_1) \leq s, \text{ for all } s \in S_1 \subseteq S,
 \]
- \(lca(S_1) \) is minimal, i.e. if \(\hat{s} \leq s \) for all \(s \in S_1 \), then \(\hat{s} \leq lca(S_1) \)
- **Note:** \(lca(S_1) \) exists for all \(S_1 \subseteq S \) (last candidate: \(top \)).
The least common ancestor is the function \(lca : 2^S \rightarrow S \) such that

- The states in \(S_1 \) are (transitive) children of \(lca(S_1) \), i.e.

\[
lca(S_1) \leq s, \text{ for all } s \in S_1 \subseteq S,
\]

- \(lca(S_1) \) is minimal, i.e. if \(\hat{s} \leq s \) for all \(s \in S_1 \), then \(\hat{s} \leq lca(S_1) \)

Note: \(lca(S_1) \) exists for all \(S_1 \subseteq S \) (last candidate: \(\text{top} \)).
Least Common Ancestor and Ting

- Two states $s_1, s_2 \in S$ are called **orthogonal**, denoted $s_1 \perp s_2$, if and only if
 - they are unordered, i.e. $s_1 \not\leq s_2$ and $s_2 \not\leq s_1$, and
 - they live in different regions of an AND-state, i.e.

$$\exists s, \text{region}(s) = \{S_1, \ldots, S_n\}, 1 \leq i \neq j \leq n : s_1 \in \text{child}(S_i) \land s_2 \in \text{child}(S_j),$$
Two states \(s_1, s_2 \in S \) are called **orthogonal**, denoted \(s_1 \perp s_2 \), if and only if

- they are unordered, i.e. \(s_1 \not\leq s_2 \) and \(s_2 \not\leq s_1 \), and
- they live in different regions of an AND-state, i.e.

\[
\exists s, \text{region}(s) = \{S_1, \ldots, S_n\}, 1 \leq i \neq j \leq n : s_1 \in \text{child}(S_i) \land s_2 \in \text{child}(S_j),
\]
Least Common Ancestor and Ting

- A set of states $S_1 \subseteq S$ is called **consistent**, denoted by $\downarrow S_1$, if and only if for each $s, s' \in S_1$,
 - $s \leq s'$,
 - $s' \leq s$, or
 - $s \perp s'$.
A set of states $S_1 \subseteq S$ is called **consistent**, denoted by $\downarrow S_1$, if and only if for each $s, s' \in S_1$,

- $s \leq s'$,
- $s' \leq s$, or
- $s \perp s'$.

Legal Transitions

A hierarchical state-machine \((S, \text{kind}, \text{region}, \rightarrow, \psi, \text{annot})\) is called **well-formed** if and only if for all transitions \(t \in \rightarrow\),

- source and destination are consistent, i.e. \(\downarrow \text{source}(t)\) and \(\downarrow \text{target}(t)\),
- source (and destination) states are pairwise unordered, i.e.
 - forall \(s, s' \in \text{source}(t) \ (\in \text{target}(t))\), \(s \perp s'\),
- the top state is neither source nor destination, i.e.
 - \(\text{top} \notin \text{source}(t) \cup \text{source}(t)\).
- Recall: final states are not sources of transitions.
Legal Transitions

A hierarchical state-machine \((S, \text{kind}, \text{region}, \rightarrow, \psi, \text{annot})\) is called well-formed if and only if for all transitions \(t \in \rightarrow\),

- source and destination are consistent, i.e. \(\downarrow \text{source}(t)\) and \(\downarrow \text{target}(t)\),
- source (and destination) states are pairwise unordered, i.e.
 - \(\forall s, s' \in \text{source}(t) \ (\in \text{target}(t)), s \perp s'\),
- the top state is neither source nor destination, i.e.
 - \(\text{top} \notin \text{source}(t) \cup \text{source}(t)\).
- Recall: final states are not sources of transitions.

Example:
The Depth of States

- \(\text{depth}(\text{top}) = 0 \),
- \(\text{depth}(s') = \text{depth}(s) + 1 \), for all \(s' \in \text{child}(s) \)
The Depth of States

- $depth(top) = 0$,
- $depth(s') = depth(s) + 1$, for all $s' \in child(s)$

Example:
Enabledness in Hierarchical State-Machines

- The **scope** ("set of possibly affected states") of a transition t is the least common region of

$$source(t) \cup target(t).$$
Enabledness in Hierarchical State-Machines

- The **scope** ("set of possibly affected states") of a transition t is the least common region of $\text{source}(t) \cup \text{target}(t)$.

- Two transitions t_1, t_2 are called **consistent** if and only if their scopes are orthogonal (i.e. states in scopes pairwise orthogonal).
• The **scope** ("set of possibly affected states") of a transition \(t \) is the least common region of

\[
\text{source}(t) \cup \text{target}(t).
\]

• Two transitions \(t_1, t_2 \) are called **consistent** if and only if their scopes are orthogonal (i.e. states in scopes pairwise orthogonal).

• The **priority** of transition \(t \) is the depth of its innermost source state, i.e.

\[
\text{prio}(t) := \max\{\text{depth}(s) \mid s \in \text{source}(t)\}
\]
Enabledness in Hierarchical State-Machines

- The **scope** ("set of possibly affected states") of a transition t is the least common region of
 \[\text{source}(t) \cup \text{target}(t). \]
- Two transitions t_1, t_2 are called **consistent** if and only if their scopes are orthogonal (i.e. states in scopes pairwise orthogonal).
- The **priority** of transition t is the depth of its innermost source state, i.e.
 \[\text{prio}(t) := \max \{ \text{depth}(s) \mid s \in \text{source}(t) \} \]
- A set of transitions $T \subseteq \rightarrow$ is **enabled** in an object u if and only if
 - T is consistent,
 - T is maximal wrt. priority,
 - all transitions in T share the same trigger,
 - all guards are satisfied by $\sigma(u)$, and
 - for all $t \in T$, the source states are active, i.e.
 \[\text{source}(t) \subseteq \sigma(u)(st) \subseteq S'. \]
Transitions in Hierarchical State-Machines

- Let T be a set of transitions enabled in u.
- Then $(\sigma, \varepsilon) \xrightarrow{(\text{cons}, Snd)} (\sigma', \varepsilon')$ if
 - $\sigma'(u)(st)$ consists of the target states of t,
 i.e. for simple states the simple states themselves, for composite states the initial states,
 - σ', ε', cons, and Snd are the effect of firing each transition $t \in T$ one by one, in any order, i.e. for each $t \in T$,
 - the exit transformer of all affected states, highest depth first,
 - the transformer of t,
 - the entry transformer of all affected states, lowest depth first.

\[\rightsquigarrow\] adjust (2.), (3.), (5.) accordingly.
Entry/Do/Exit Actions, Internal Transitions
Entry/Do/Exit Actions

- In general, with each state $s \in S$ there is associated
 - an **entry**, a **do**, and an **exit** action (default: skip)
 - a possibly empty set of trigger/action pairs called **internal transitions**, (default: empty). $E_1, \ldots, E_n \in \mathcal{E}$, ‘entry’, ‘do’, ‘exit’ are reserved names!
In general, with each state \(s \in S \) there is associated

- an **entry**, a **do**, and an **exit** action (default: skip)
- a possibly empty set of trigger/action pairs called **internal transitions**, (default: empty). \(E_1, \ldots, E_n \in \mathcal{E} \), ‘entry’, ‘do’, ‘exit’ are reserved names!

Recall: each action’s supposed to have a transformer. Here: \(t_{act}^{entry}, t_{act}^{exit}, \ldots \)

Taking the transition above then amounts to applying

\[
t_{act_{s_2}}^{entry} \circ t_{act} \circ t_{act_{s_1}}^{exit}
\]

instead of only

\[
t_{act}
\]

\(\rightsquigarrow \) adjust (2.), (3.) accordingly.
Internal Transitions

<table>
<thead>
<tr>
<th>(s_1)</th>
<th>(s_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>entry/act_{\text{entry}}^1</td>
<td>entry/act_{\text{entry}}^2</td>
</tr>
<tr>
<td>do/act_{\text{do}}^1</td>
<td>do/act_{\text{do}}^2</td>
</tr>
<tr>
<td>exit/act_{\text{exit}}^1</td>
<td>exit/act_{\text{exit}}^2</td>
</tr>
<tr>
<td>(E_1/\text{act}_{E_1})</td>
<td></td>
</tr>
<tr>
<td>(\ldots)</td>
<td></td>
</tr>
<tr>
<td>(E_n/\text{act}_{E_n})</td>
<td></td>
</tr>
</tbody>
</table>

- For **internal transitions**, taking the one for \(E_1 \), for instance, still amounts to taking only \(t_{\text{act}_{E_1}} \).

- Intuition: The state is neither left nor entered, so: no exit, no entry.

 \(\rightsquigarrow \) adjust (2.) accordingly.

- Note: internal transitions also start a run-to-completion step.
For **internal transitions**, taking the one for E_1, for instance, still amounts to taking only $t_{act E_1}$.

Intuition: The state is neither left nor entered, so: no exit, no entry.

\Rightarrow adjust (2.) accordingly.

Note: internal transitions also start a run-to-completion step.

Note: the standard seems not to clarify whether internal transitions have priority over regular transitions with the same trigger at the same state.

Some code generators assume that internal transitions have priority!
Alternative View: Entry/Exit/Internal as Abbreviations

- ... as abbreviation for ...

\[s_0 \xrightarrow{tr_0[gd_0]/act_0} s_1 \xrightarrow{tr_1[gd_1]/act_1} s_2 \]

\[\begin{array}{c}
 \text{entry/act}^\text{entry} \\
 \text{exit/act}^\text{exit} \\
 E_1/act_{E_1}
\end{array} \]

\[\begin{array}{c}
 \text{entry/act}^\text{entry} \\
 \text{exit/act}^\text{exit} \\
 E_1/act_{E_1}
\end{array} \]
Alternative View: Entry/Exit/Internal as Abbreviations

- ... as abbreviation for ...

- That is: Entry/Internal/Exit don’t add expressive power to Core State Machines. If internal actions should have priority, s_1 can be embedded into an OR-state (see later).
- Abbreviation may avoid confusion in context of hierarchical states (see later).
Do Actions

- **Intuition**: after entering a state, start its do-action.
- If the do-action terminates,
 - then the state is considered **completed**,
- otherwise,
 - if the state is left before termination, the do-action is stopped.
Intuition: after entering a state, start its do-action.

- If the do-action terminates,
 - then the state is considered **completed**,
- otherwise,
 - if the state is left before termination, the do-action is stopped.

Recall the overall UML State Machine philosophy:

“An object is either idle or doing a run-to-completion step.”

Now, what is it exactly while the do action is executing...?
The Concept of History, and Other Pseudo-States
What happens on...

- R_s?
 - s_0, s_2

- R_d?
 - s_0, s_2

- A, B, C, S, R_s?
 - $s_0, s_1, s_2, s_3, s_4, s_5, s_{\text{suspend}}, s_3$

- A, B, S, R_d?
 - $s_0, s_1, s_2, s_3, s_4, s_5, s_{\text{suspend}}, s_3$

- A, B, C, D, E, R_s?
 - $s_0, s_1, s_2, s_3, s_4, s_5, s_{\text{suspend}}, s_3$

- A, B, C, D, R_d?
 - $s_0, s_1, s_2, s_3, s_4, s_5, s_{\text{suspend}}, s_5$
Junction and Choice

- Junction ("static conditional branch"):

- Choice: ("dynamic conditional branch")

Note: not so sure about naming and symbols, e.g., I’d guessed it was just the other way round...
Junction and Choice

- Junction ("static conditional branch"):
 - **good**: abbreviation
 - unfolds to so many similar transitions with different guards, the unfolded transitions are then checked for enabledness
 - at best, start with trigger, branch into conditions, then apply actions

- Choice: ("dynamic conditional branch")

Note: not so sure about naming and symbols, e.g., I’d guessed it was just the other way round...
Junction and Choice

• Junction ("static conditional branch"):
 • good: abbreviation
 • unfolds to so many similar transitions with different guards, the unfolded transitions are then checked for enabledness
 • at best, start with trigger, branch into conditions, then apply actions

• Choice: ("dynamic conditional branch")
 • evil: may get stuck
 • enters the transition without knowing whether there’s an enabled path
 • at best, use “else” and convince yourself that it cannot get stuck
 • maybe even better: avoid

Note: not so sure about naming and symbols, e.g., I’d guessed it was just the other way round...
Hierarchical states can be "folded" for readability. (but: this can also hinder readability.)

Can even be taken from a different state-machine for re-use.
Hierarchical states can be "folded" for readability. (but: this can also hinder readability.)

Can even be taken from a different state-machine for re-use.

Entry/exit points

- Provide connection points for finer integration into the current level, than just via initial state.
- Semantically a bit tricky:
 - **First** the exit action of the exiting state,
 - **then** the actions of the transition,
 - **then** the entry actions of the entered state,
 - **then** action of the transition from the entry point to an internal state,
 - and **then** that internal state’s entry action.
Hierarchical states can be “folded” for readability.
(but: this can also hinder readability.)

Can even be taken from a different state-machine for re-use.

Entry/exit points
- Provide connection points for finer integration into the current level, than just via initial state.
- Semantically a bit tricky:
 - First the exit action of the exiting state,
 - then the actions of the transition,
 - then the entry actions of the entered state,
 - then action of the transition from the entry point to an internal state,
 - and then that internal state’s entry action.

Terminate Pseudo-State
- When a terminate pseudo-state is reached, the object taking the transition is immediately killed.
Deferred Events in State-Machines
Active and Passive Objects [?]
What about non-Active Objects?

Recall:

- We’re **still** working under the assumption that all classes in the class diagram (and thus all objects) are **active**.
- That is, each object has its own thread of control and is (if stable) at any time ready to process an event from the ether.
What about non-Active Objects?

Recall:

- We’re still working under the assumption that all classes in the class diagram (and thus all objects) are active.
- That is, each object has its own thread of control and is (if stable) at any time ready to process an event from the ether.

But the world doesn’t consist of only active objects.
For instance, in the crossing controller from the exercises we could wish to have the whole system live in one thread of control.

So we have to address questions like:

- Can we send events to a non-active object?
- And if so, when are these events processed?
- etc.
propose the following (orthogonal!) notions:

- A class (and thus the instances of this class) is either **active** or **passive** as declared in the class diagram.
 - An **active** object has (in the operating system sense) an own thread: an own program counter, an own stack, etc.
 - A **passive** object doesn’t.
[?] propose the following (orthogonal!) notions:

- A class (and thus the instances of this class) is either active or passive as declared in the class diagram.
 - An active object has (in the operating system sense) an own thread: an own program counter, an own stack, etc.
 - A passive object doesn’t.

- A class is either reactive or non-reactive.
 - A reactive class has a (non-trivial) state machine.
 - A non-reactive one hasn’t.
Active and Passive Objects: Nomenclature

[?] propose the following (orthogonal!) notions:

- A class (and thus the instances of this class) is either active or passive as declared in the class diagram.
 - An active object has (in the operating system sense) an own thread: an own program counter, an own stack, etc.
 - A passive object doesn’t.

- A class is either reactive or non-reactive.
 - A reactive class has a (non-trivial) state machine.
 - A non-reactive one hasn’t.

Which combinations do we understand?

<table>
<thead>
<tr>
<th></th>
<th>active</th>
<th>passive</th>
</tr>
</thead>
<tbody>
<tr>
<td>reactive</td>
<td>✔</td>
<td>(※)</td>
</tr>
<tr>
<td>non-reactive</td>
<td>(✔)</td>
<td>(✔)</td>
</tr>
</tbody>
</table>
Passive and Reactive

- So why don’t we understand passive/reactive?
- Assume passive objects u_1 and u_2, and active object u, and that there are events in the ether for all three.

Which of them (can) start a run-to-completion step...?
Do run-to-completion steps still interleave...?
Passive and Reactive

- So why don’t we understand passive/reactive?
- Assume passive objects u_1 and u_2, and active object u, and that there are events in the ether for all three.

Which of them (can) start a run-to-completion step...?
Do run-to-completion steps still interleave...?

Reasonable Approaches:

- **Avoid** — for instance, by
 - require that reactive implies active for model well-formedness.
 - requiring for model well-formedness that events are never sent to instances of non-reactive classes.

- **Explain** — here: (following [?])
 - Delegate all dispatching of events to the active objects.
Firstly, establish that each object u knows, via (implicit) link \textit{itsAct}, the active object u_{act} which is responsible for dispatching events to u.

If u is an instance of an active class, then $u_a = u$.
• Firstly, establish that each object \(u \) knows, via (implicit) link \(\text{itsAct} \), the active object \(u_{\text{act}} \) which is responsible for dispatching events to \(u \).

• If \(u \) is an instance of an active class, then \(u_{\text{a}} = u \).

\[u_1 : C_1 \xrightarrow{n} u_d : C_2 \xrightarrow{\text{itsAct}} u_{\text{a}} : D \]

Sending an event:

• Establish that for each signal we have a version \(E_C \) with an association \(\text{dest} : C_{0,1}, C \in \mathcal{C} \).

• Then \(n!E \) in \(u_1 : C_1 \) becomes:

• Create an instance \(u_e \) of \(E_{C_2} \) and set \(u_e \)'s \(\text{dest} \) to \(u_d := \sigma(u_1)(n) \).

• Send to \(u_{\text{a}} := \sigma(\sigma(u_1)(n))(\text{itsAct}) \), i.e., \(\varepsilon' = \varepsilon \oplus (u_{\text{a}}, u_e) \).
Passive Reactive Classes

- Firstly, establish that each object \(u \) knows, via (implicit) link \(\text{itsAct} \), the active object \(u_{\text{act}} \) which is responsible for dispatching events to \(u \).
- If \(u \) is an instance of an active class, then \(u_a = u \).

\[
\begin{array}{c}
\text{itsAct} \\
\downarrow \\
\hline
u_1 : C_1 \quad n \quad ud : C_2 \quad \downarrow \text{itsAct} \quad u_a : D
\end{array}
\]

Sending an event:
- Establish that of each signal we have a version \(E_C \) with an association \(\text{dest} : C_{0,1}, C \in \mathcal{C} \).
- Then \(n!E \) in \(u_1 : C_1 \) becomes:
- Create an instance \(u_e \) of \(E_{C_2} \) and set \(u_e \)'s \(\text{dest} \) to \(u_d := \sigma(u_1)(n) \).
- Send to \(u_a := \sigma(\sigma(u_1)(n))(\text{itsAct}) \), i.e., \(\varepsilon' = \varepsilon \oplus (u_a, u_e) \).

Dispatching an event:
- Observation: the ether only has events for active objects.
- Say \(u_e \) is ready in the ether for \(u_a \).
- Then \(u_a \) asks \(\sigma(u_e)(\text{dest}) = u_d \) to process \(u_e \) — and waits until completion of corresponding RTC.
- \(u_d \) may in particular discard event.
And What About Methods?
And What About Methods?

- In the current setting, the (local) state of objects is only modified by actions of transitions, which we abstract to transformers.
- In general, there are also **methods**.
- UML follows an approach to separate
 - the **interface declaration** from
 - the **implementation**.

In C++ lingo: distinguish **declaration** and **definition** of method.
And What About Methods?

- In the current setting, the (local) state of objects is only modified by actions of transitions, which we abstract to transformers.

- In general, there are also **methods**.

- UML follows an approach to separate
 - the **interface declaration** from
 - the **implementation**.

In C++ lingo: distinguish **declaration** and **definition** of method.

- In UML, the former is called **behavioural feature**
 and can (roughly) be
 - a **call interface** \(f(\tau_{11}, \ldots, \tau_{n_1}) : \tau_1 \)
 - a **signal name** \(E \)

<table>
<thead>
<tr>
<th>(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\xi_1 \ f(\tau_{1,1}, \ldots, \tau_{1,n_1}) : \tau_1 \ P_1)</td>
</tr>
<tr>
<td>(\xi_2 \ F(\tau_{2,1}, \ldots, \tau_{2,n_2}) : \tau_2 \ P_2)</td>
</tr>
<tr>
<td>(\langle \langle \text{signal} \rangle \rangle \ E)</td>
</tr>
</tbody>
</table>

Note: The signal list is redundant as it can be looked up in the state machine of the class. But: certainly useful for documentation.
Behavioural Features

<table>
<thead>
<tr>
<th></th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ξ_1</td>
<td>$f(\tau_{1,1}, \ldots, \tau_{1,n_1}) : \tau_1 \ P_1$</td>
</tr>
<tr>
<td>ξ_2</td>
<td>$F(\tau_{2,1}, \ldots, \tau_{2,n_2}) : \tau_2 \ P_2$</td>
</tr>
<tr>
<td>$\langle \langle signal \rangle \rangle$</td>
<td>E</td>
</tr>
</tbody>
</table>

Semantics:

- The **implementation** of a behavioural feature can be provided by:
 - An **operation**.
 - The class’ **state-machine** (“triggered operation”).
Behavioural Features

<table>
<thead>
<tr>
<th>C</th>
</tr>
</thead>
</table>
| $\xi_1 f(\tau_{1,1}, \ldots, \tau_{1,n_1}) : \tau_1 P_1$
| $\xi_2 F(\tau_{2,1}, \ldots, \tau_{2,n_2}) : \tau_2 P_2$
| $\llangle \langle \text{signal} \rangle \rrangle E$

Semantics:

- The **implementation** of a behavioural feature can be provided by:
 - **An operation.**
 - In our setting, we simply assume a transformer like T_f.
 - It is then, e.g. clear how to admit method calls as actions on transitions: function composition of transformers (clear but tedious: non-termination).
 - In a setting with Java as action language: operation is a method body.
 - The class’ **state-machine** (“triggered operation”).
Behavioural Features

Semantics:

- The **implementation** of a behavioural feature can be provided by:
 - An **operation**.

 In our setting, we simply assume a transformer like T_f.

 It is then, e.g. clear how to admit method calls as actions on transitions: function composition of transformers (clear but tedious: non-termination).

 In a setting with Java as action language: operation is a method body.
 - The class’ **state-machine** (“triggered operation”).

 - Calling F with n_2 parameters for a stable instance of C
 creates an auxiliary event F and dispatches it (bypassing the ether).

 - Transition actions may fill in the return value.

 - On completion of the RTC step, the call returns.

 - For a non-stable instance, the caller blocks until stability is reached again.
Visibility:

- Extend typing rules to sequences of actions such that a well-typed action sequence only calls visible methods.
Behavioural Features: Visibility and Properties

<table>
<thead>
<tr>
<th>(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\xi_1 f(\tau_{1,1}, \ldots, \tau_{1,n_1}) : \tau_1 P_1)</td>
</tr>
<tr>
<td>(\xi_2 F(\tau_{2,1}, \ldots, \tau_{2,n_2}) : \tau_2 P_2)</td>
</tr>
<tr>
<td>(\langle \langle \text{signal} \rangle \rangle E)</td>
</tr>
</tbody>
</table>

- **Visibility:**
 - Extend typing rules to sequences of actions such that a well-typed action sequence only calls visible methods.

- **Useful properties:**
 - **concurrency**
 - **concurrent** — is thread safe
 - **guarded** — some mechanism ensures/should ensure mutual exclusion
 - **sequential** — is not thread safe, users have to ensure mutual exclusion
 - **isQuery** — doesn’t modify the state space (thus thread safe)

- For simplicity, we leave the notion of steps untouched, we construct our semantics around state machines.
 Yet we could explain pre/post in OCL (if we wanted to).
Discussion.
You are here.
Course Map

UML

Model

\[\mathcal{I} = (\mathcal{I}, \mathcal{C}, \mathcal{V}, \text{attr}), \mathcal{SM} \]

\[M = (\Sigma_{\mathcal{I}}, A_{\mathcal{I}}, \rightarrow_{\mathcal{SM}}) \]

Instances

\[\pi = (\sigma_0, \varepsilon_0) \xrightarrow{(\text{cons}_0, \text{Snd}_0)} (\sigma_1, \varepsilon_1) \cdots \xrightarrow{u_0} w_\pi = ((\sigma_i, \text{cons}_i, \text{Snd}_i))_{i \in \mathbb{N}} \]

Mathematics

\[G = (N, E, f) \]

UML

Mathematics

CD, SM

\[\varphi \in \text{OCL} \]

CD, SD

\[B = (Q_{SD}, q_0, A_{\mathcal{I}}, \rightarrow_{SD}, F_{SD}) \]

\[\mathcal{OD} \]
References