Contents & Goals

Last Lecture:

- Hierarchical State Machines Syntax
- Initial and Final State

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - What does this State Machine mean? What happens if I inject this event?
 - Can you please model the following behaviour.
 - What does this hierarchical State Machine mean? What may happen if I inject this event?
 - What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state, ...

- Content:
 - Composite State Semantics
 - The Rest
Composite States

(formalisation follows [Damm et al., 2003])
Composite States

- In a sense, composite states are about **abbreviation**, **structuring**, and **avoiding redundancy**.

- Idea: in Tron, for the Player’s Statemachne, instead of

  ```write
  resigned
  ```
Composite States

and instead of

\[
\text{fast}N\]

\[
\text{write}\]

\[
\text{slow}\]

\[
\text{fast}\]
Recall: Syntax

translates to

$$\{(top, st), (s, st), (s_1, st)(s'_1, st)(s_2, st)(s'_2, st)(s_3, st)(s'_3, st)\},$$

$$\text{S, kind, }$$

$$\{top \mapsto \{s\}, s \mapsto \{s_1, s'_1\}, \{s_2, s'_2\}, \{s_3, s'_3\}, s_1 \mapsto \emptyset, s'_1 \mapsto \emptyset, \ldots\},$$

$$\text{region, }$$

$$\rightarrow, \psi, \text{annot}$$
Syntax: Fork/Join

- For brevity, we always consider transitions with (possibly) multiple sources and targets, i.e.
 \[\psi : (\to) \to (2^S \setminus \emptyset) \times (2^S \setminus \emptyset) \]

- For instance,

 \[
 \begin{array}{c}
 s_1 \\
 s_2 \\
 s_3 \\
 \end{array} \quad \text{join} \quad \begin{array}{c}
 tr[gd]/act \\
 \end{array} \quad \begin{array}{c}
 s_4 \\
 s_5 \\
 s_6 \\
 \end{array} \quad \text{fork}
 \]

 translates to

 \[
 (S, \text{kind}, \text{region}, \{t_1\}, \{t_1 \mapsto (\{s_2, s_3\}, \{s_5, s_6\})\}, \{t_1 \mapsto (\text{tr}, \text{gd}, \text{act})\})
 \]

- Naming convention: \(\psi(t) = (\underline{\text{source}}(t), \underline{\text{target}}(t)) \).
Composite States: Blessing or Curse?

- what may happen on E?
- what may happen on E, F?
- can E, G kill the object?
- ...
Composite States: Blessing or Curse?

States:
- what are legal state configurations?
- what is the type of the implicit \(st \) attribute?

Transitions:
- what are legal transitions?
- when is a transition enabled?
- what effects do transitions have?

- what may happen on \(E \)?
- what may happen on \(E, F \)?
- can \(E, G \) kill the object?
- ...

\[s_1 \]
\[s_2 \]
\[s_3 \]
\[s_4 \]
\[s_5 \]
\[s_6 \]
\[s_7 \]
\[s_8 \]
$\text{st} = \{s\}$

$\text{st} = \{s, s', s^\prime, \text{top}\}$

$\text{st} = \{s_0, s_1, s_2\}$

$\text{st} = \{s_0, s_1, s_2, \ldots, \text{top}\}$

$\text{st} = \{s_0, s_2\} \quad \text{NO!}$
State Configuration

- The type of st is from now on a set of states, i.e. $st : 2^S$

- A set $S_1 \subseteq S$ is called (legal) state configurations if and only if
 - $top \in S_1$, and
 - for each state $s \in S_1$, for each non-empty region $\emptyset \neq R \in region(s)$, exactly one (non pseudo-state) child of s (from R) is in S_1, i.e.
 \[
 \left| \{ s_0 \in R \mid kind(s_0) \in \{st, fin\} \} \cap S_1 \right| = 1.
 \]

- **Examples:**

 \[
 \begin{array}{c|c}
 s & s_1 & s_2 & s_3 \\
 \hline
 S_7 = \{ s \} & \text{NOT LEGAL, top missing} \\
 S_2 = \{ top, s \} & \text{NOT LEGAL, missing child of } s \\
 S_3 = \{ top, s, s_1, s_3 \} & \text{NOT LEGAL, too many children of } s \\
 S_4 = \{ top, s, s_1 \} & \text{LEGAL} \\
 \end{array}
 \]
The type of st is from now on a set of states, i.e. $st : 2^S$

A set $S_1 \subseteq S$ is called (legal) state configurations if and only if

- $top \in S_1$, and
- for each state $s \in S_1$, for each non-empty region $\emptyset \neq R \in \text{region}(s)$, exactly one (non pseudo-state) child of s (from R) is in S_1, i.e.

$$|\{s_0 \in R \mid \text{kind}(s_0) \in \{st, fin\}\} \cap S_1| = 1.$$

Examples:

$$S_1 = \{\text{top}, s_1, s_2', s_3\} \quad \text{NOT LEGAL, child of } s_3 \text{ is missing}$$

$$S_2 = \{\text{top}, s, s_1, s_2\} \quad \text{NOT LEGAL, child of } s \text{ from } R_3 \text{ missing}$$

$$S_3 = \{\text{top}, s_1, s_2, s_3\}$$
The substate- (or child-) relation induces a partial order on states:

- \(\text{top} \leq s \), for all \(s \in S \),
- \(s \leq s' \), for all \(s' \in \text{child}(s) \),
- transitive, reflexive, antisymmetric,
- \(s' \leq s \) and \(s'' \leq s \) implies \(s' \leq s'' \) or \(s'' \leq s' \).
A Partial Order on States

The substate- (or child-) relation induces a partial order on states:

- \(\text{top} \leq s \), for all \(s \in S \),
- \(s \leq s' \), for all \(s' \in \text{child}(s) \),
- transitive, reflexive, antisymmetric,
- \(s' \leq s \) and \(s'' \leq s \) implies \(s' \leq s'' \) or \(s'' \leq s' \).
The least common ancestor is the function \(\text{lca} : 2^S \setminus \{\emptyset\} \rightarrow S \) such that:

- The states in \(S_1 \) are (transitive) children of \(\text{lca}(S_1) \), i.e.
 \[
 \text{lca}(S_1) \leq s, \text{ for all } s \in S_1 \subseteq S,
 \]
- \(\text{lca}(S_1) \) is minimal, i.e. if \(\hat{s} \leq s \) for all \(s \in S_1 \), then \(\hat{s} \leq \text{lca}(S_1) \)
- **Note**: \(\text{lca}(S_1) \) exists for all \(S_1 \subseteq S \) (last candidate: \(\text{top} \)).
Two states $s_1, s_2 \in S$ are called orthogonal, denoted $s_1 \perp s_2$, if and only if
- they are unordered, i.e. $s_1 \not\leq s_2$ and $s_2 \not\leq s_1$, and
- they “live” in different regions of an AND-state, i.e.

$$\exists s, \text{region}(s) = \{S_1, \ldots, S_n\} \exists 1 \leq i \neq j \leq n : s_1 \in \text{child}^*(S_i) \land s_2 \in \text{child}^*(S_j)$$
A set of states $S_1 \subseteq S$ is called **consistent**, denoted by $\downarrow S_1$, if and only if for each $s, s' \in S_1$,

- $s \leq s'$, or
- $s' \leq s$, or
- $s \perp s'$.

Note: $S_1 \subseteq S \Rightarrow S_1$ is a legal state config. if S_1 is maximal consistent.
Legal Transitions

A hierarchical state-machine \((S, \text{kind}, \text{region}, \rightarrow, \psi, \text{annot})\) is called \textbf{well-formed} if and only if for all transitions \(t \in \rightarrow\),

- (i) source and destination are consistent, i.e. \(\downarrow \text{source}(t)\) and \(\downarrow \text{target}(t)\),

- (ii) source (and destination) states are pairwise orthogonal, i.e.
 - for all \(s \neq s' \in \text{source}(t) (\in \text{target}(t))\), \(s \perp s'\),

- (iii) the top state is neither source nor destination, i.e.
 - \(\text{top} \notin \text{source}(t) \cup \text{source}(t)\).

- Recall: final states are not sources of transitions.
Legal Transitions

A hierarchical state-machine \((S, \text{kind}, \text{region}, \rightarrow, \psi, \text{annot})\) is called well-formed if and only if for all transitions \(t \in \rightarrow,\)

(i) source and destination are consistent, i.e. \(\downarrow \text{source}(t)\) and \(\downarrow \text{target}(t),\)
(ii) source (and destination) states are pairwise orthogonal, i.e.
 - \(\text{forall } s \neq s' \in \text{source}(t) (\in \text{target}(t)), s \perp s',\)
(iii) the top state is neither source nor destination, i.e.
 - \(\text{top} \notin \text{source}(t) \cup \text{source}(t).\)

- Recall: final states are not sources of transitions.

Example:
The Depth of States

- \(\text{depth}(\text{top}) = 0 \),
- \(\text{depth}(s') = \text{depth}(s) + 1 \), for all \(s' \in \text{child}(s) \)

Example:

![Diagram showing the depth of states with nodes labeled s1, s2, s3, s4, s5, s6, s7, s8, and edges connecting them to show the depth structure.](image-url)
Enabledness in Hierarchical State-Machines

- The **scope** ("set of possibly affected states") of a transition t is the **least common region** of
 $$source(t) \cup target(t).$$
- Two transitions t_1, t_2 are called **consistent** if and only if their scopes are orthogonal (i.e. states in scopes pairwise orthogonal).
- The **priority** of transition t is the depth of its innermost source state, i.e.
 $$prio(t) := \max\{\text{depth}(s) \mid s \in source(t)\}$$
- A set of transitions $T \subseteq \rightarrow$ is **enabled** in an object u if and only if
 - T is consistent,
 - T is maximal wrt. priority,
 - all transitions in T share the same trigger,
 - all guards are satisfied by $\sigma(u)$, and
 - for all $t \in T$, the source states are active, i.e.
 $$source(t) \subseteq \sigma(u)(st) \ (\subseteq S).$$
Transitions in Hierarchical State-Machines

- Let T be a set of transitions enabled in u.
- Then $(\sigma, \varepsilon) \xrightarrow{(\text{cons}, Snd)} (\sigma', \varepsilon')$ if
 - $\sigma'(u)(st)$ consists of the target states of T,
 i.e. for simple states the simple states themselves, for composite states the initial states,
 - $\sigma', \varepsilon', (\text{cons})$ and Snd are the effect of firing each transition $t \in T$ one by one, in any order, i.e. for each $t \in T$,
 - the exit transformer of all affected states, highest depth first,
 - the transformer of t,
 - the entry transformer of all affected states, lowest depth first.

\rightsquigarrow adjust (2.), (3.), (5.) accordingly.
Entry/Do/Exit Actions, Internal Transitions
Entry/Do/Exit Actions

- In general, with each state $s \in S$ there is associated
 - an entry, a do, and an exit action (default: skip)
 - a possibly empty set of trigger/action pairs called internal transitions,
 (default: empty). $E_1, \ldots, E_n \in \mathcal{E}$, ‘entry’, ‘do’, ‘exit’ are reserved names!

- Recall: each action’s supposed to have a transformer. Here: $t_{act_1^\text{entry}}, t_{act_1^\text{exit}}, \ldots$
- Taking the transition above then amounts to applying
 $$t_{act_2^\text{entry}} \circ t_{act} \circ t_{act_1^\text{exit}}$$
 instead of only
 $$t_{act}$$
 \leadsto adjust (2.), (3.) accordingly.
Internal Transitions

For internal transitions, taking the one for E_1, for instance, still amounts to taking only $t_{act_{E_1}}$.

Intuition: The state is neither left nor entered, so: no exit, no entry.

\Rightarrow adjust (2.) accordingly.

Note: internal transitions also start a run-to-completion step.

Note: the standard seems not to clarify whether internal transitions have priority over regular transitions with the same trigger at the same state.

Some code generators assume that internal transitions have priority!
Alternative View: Entry/Exit/Internal as Abbreviations

- ... as abbreviation for ...
Alternative View: Entry/Exit/Internal as Abbreviations

... as abbreviation for ...

That is: Entry/Internal/Exit don't add expressive power to Core State Machines. If internal actions should have priority, s_1 can be embedded into an OR-state (see later).

Abbreviation may avoid confusion in context of hierarchical states (see later).
Do Actions

- **Intuition**: after entering a state, start its do-action.

- If the do-action terminates,
 - then the state is considered **completed**,

- otherwise,
 - if the state is left before termination, the do-action is stopped.

- Recall the overall UML State Machine philosophy:

 "An object is either idle or doing a run-to-completion step."

- Now, what is it exactly while the do action is executing...?
The Concept of History, and Other Pseudo-States
History and Deep History: By Example

What happens on...

- R_s?
 s_0, s_2

- R_d?
 s_0, s_2

- A, B, C, S, R_s?
 $s_0, s_1, s_2, s_3, susp, s_3$

- A, B, S, R_d?
 $s_0, s_1, s_2, s_3, susp, s_3$

- A, B, C, D, E, R_s?
 $s_0, s_1, s_2, s_3, s_4, s_5, susp, s_3$

- A, B, C, D, R_d?
 $s_0, s_1, s_2, s_3, s_4, s_5, susp, s_5$
Junction and Choice

- Junction ("static conditional branch"):
 - **good**: abbreviation
 - unfolds to so many similar transitions with different guards, the unfolded transitions are then checked for enabledness
 - at best, start with trigger, branch into conditions, then apply actions

- Choice: ("dynamic conditional branch")
 - **evil**: may get stuck
 - enters the transition **without knowing** whether there’s an enabled path
 - at best, use “else” and convince yourself that it cannot get stuck
 - maybe even better: **avoid**

Note: not so sure about naming and symbols, e.g., I’d guessed it was just the other way round...
Entry and Exit Point, Submachine State, Terminate

- Hierarchical states can be "folded" for readability. (but: this can also hinder readability.)
- Can even be taken from a different state-machine for re-use.

Entry/exit points

- Provide connection points for finer integration into the current level, than just via initial state.
- Semantically a bit tricky:
 - **First** the exit action of the exiting state,
 - **then** the actions of the transition,
 - **then** the entry actions of the entered state,
 - **then** action of the transition from the entry point to an internal state,
 - and **then** that internal state's entry action.

Terminate Pseudo-State

- When a terminate pseudo-state is reached, the object taking the transition is immediately killed.
References
References

