
SoftwareDesign, Modelli ng andAnalysis in UML

Lecture11: CoreStateMachines II

2012-12-05

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

–
1
1

–
2
0
1
2
-1

2
-0

5
–

m
a
in

–

Contents & Goals

Last Lecture:

• Core State Machines

• UML State Machine syntax

• State machines belong to classes.

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What does this State Machine mean? What happens if I inject this event?

• Can you please model the following behaviour.

• What is: Signal, Event, Ether, Transformer, Step, RTC.

• Content:

• Ether, System Configuration, Transformer

• Run-to-completion Step

• Putting It All Together

–
1
1

–
2
0
1
2
-1

2
-0

5
–

S
p
re

li
m

–

2/64

Recall : UML StateMachines

–
1
1

–
2
0
1
2
-1

2
-0

5
–

m
a
in

–

3/64

Core StateMachine

Definition.
A core state machine over signature S = (T,C, V, atr , E) is a
tuple

M = (S, s0,→)

where
• S is a non-empty, finite set of (basic) states,

• s0 ∈ S is an initial state,

• and

→ ⊆ S × (E ∪ { })
︸ ︷︷ ︸

trigger

×ExprS
︸ ︷︷ ︸

guard

×ActS
︸ ︷︷ ︸

action

×S

is a labelled transition relation.

We assume a set ExprS of boolean expressions over S (for in-
stance OCL, may be something else) and a set ActS of actions.

–
0
9

–
2
0
1
1
-1

2
-1

4
–

S
st

m
sy

n
–

17/75

–
1
1

–
2
0
1
2
-1

2
-0

5
–

S
st

m
o
ve

r
–

4/64

From UML to Core StateMachines: By Example

UML state machine diagram SM:

s1 s2
annot

annot ::=
[

〈event〉[‘.’ 〈event〉]∗ [‘[’ 〈guard〉 ‘]’] [‘/’ 〈action〉]
]

with

• event ∈ E ,

• guard ∈ ExprS (default: true, assumed to be in ExprS)

• action ∈ ActS (default: skip, assumed to be in ActS)

maps to

M(SM) =
(
{s1, s2}
︸ ︷︷ ︸

S

, s1
︸︷︷︸

s0

, (s1, event , guard , action, s2)
︸ ︷︷ ︸

→

)

–
0
9

–
2
0
1
1
-1

2
-1

4
–

S
st

m
sy

n
–

18/75

–
1
1

–
2
0
1
2
-1

2
-0

5
–

S
st

m
o
ve

r
–

5/64

–
1
1

–
2
0
1
2
-1

2
-0

5
–

S
st

m
o
ve

r
–

6/64

TheBasic Causality Model

–
1
1

–
2
0
1
2
-1

2
-0

5
–

m
a
in

–

7/64

6.2.3 TheBasic Causality Model [OMG, 2007b, 12]

“ ‘Causality model’ is a specification of how things happen at run time [...].

The causality model is quite straightforward:

• Objects respond to messages that are generated by objects executing
communication actions.

• When these messages arrive, the receiving objects eventually respond
by executing the behavior that is matched to that message.

• The dispatching method by which a particular behavior is associated
with a given message depends on the higher-level formalism used and
is not defined in the UML specification
(i.e., it is a semantic variation point).

The causality model also subsumes behaviors invoking each other and pass-
ing information to each other through arguments to parameters of the in-
voked behavior, [...].

This purely ‘procedural’ or ‘process’ model can be used by itself or in con-
junction with the object-oriented model of the previous example.”

–
1
1

–
2
0
1
2
-1

2
-0

5
–

S
st

m
st

d
–

8/64

15.3.12 StateMachine [OMG, 2007b, 563]

• Event occurrences are detected,
dispatched, and then processed by the
state machine, one at a time.

• The semantics of event occurrence
processing is based on the run-to-
completion assumption, interpreted as
run-to-completion processing.

• Run-to-completion processing means
that an event [...] can only be taken from
the pool and dispatched if the processing
of the previous [...] is fully completed.

• The processing of a single event
occurrence by a state machine is known
as a run-to-completion step.

• Before commencing on a run-to-

completion step, a state machine is

in a stable state configuration with all

entry/exit/internal-activities (but not

necessarily do-activities) completed.

• The same conditions apply after the
run-to-completion step is completed.

• Thus, an event occurrence will never be
processed [...] in some intermediate and
inconsistent situation.

• [IOW,] The run-to-completion step is
the passage between two state
configurations of the state machine.

• The run-to-completion assumption sim-

plifies the transition function of the StM,

since concurrency conflicts are avoided

during the processing of event, allowing

the StM to safely complete its run-to-

completion step.

–
1
1

–
2
0
1
2
-1

2
-0

5
–

S
st

m
st

d
–

10/64

15.3.12 StateMachine [OMG, 2007b, 563]

• The order of dequeuing is not defined,

leaving open the possibility of modeling

different priority-based schemes.

• Run-to-completion may be implemented

in various ways. [...]

–
1
1

–
2
0
1
2
-1

2
-0

5
–

S
st

m
st

d
–

11/64

–
1
1

–
2
0
1
2
-1

2
-0

5
–

S
st

m
st

d
–

12/64

And?
s1 s2

s3

E[n 6= ∅]/x := x + 1; n ! F

/n := ∅F/x := 0

• ...:

• We have to formally define what event occurrence is.

• We have to define where events are stored – what the event pool is.

• We have to explain how transitions are chosen – “matching”.

• We have to explain what the effect of actions is – on state and event pool.

• We have to decide on the granularity — micro-steps, steps,
run-to-completion steps (aka. super-steps)?

• We have to formally define a notion of stability and RTC-step completion.

• And then: hierarchical state machines.

s

s1 s2 s3

s′1 s′2 s′3

E/ E/ E/

E/

–
1
1

–
2
0
1
2
-1

2
-0

5
–

S
st

m
st

d
–

13/64

Roadmap: Chronologically

(i) What do we (have to) cover?
UML State Machine Diagrams Syntax.

(ii) Def.: Signature with signals.

(iii) Def.: Core state machine.

(iv) Map UML State Machine Diagrams
to core state machines.

Semantics:
The Basic Causality Model

(v) Def.: Ether (aka. event pool)

(vi) Def.: System configuration.

(vii) Def.: Event.

(viii) Def.: Transformer.

(ix) Def.: Transition system, computation.

(x) Transition relation induced by core state ma-
chine.

(xi) Def.: step, run-to-completion step.

(xii) Later: Hierarchical state machines.

UML

M
o
d
e
l

In
s
t
a
n
c
e
s

N

S

W

CD, SM

S = (T,C, V, atr), SM

M = (ΣDS , AS ,→SM)

ϕ ∈ OCL

expr

CD, SD

S , SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ = ((σi, cons i, Snd i))i∈N

G = (N, E, f) Mathematics

OD UML

✔ !

✔ !

!
✔

✔

✔

✔

✔

–
1
1

–
2
0
1
2
-1

2
-0

5
–

S
st

m
st

d
–

14/64

System Configuration, Ether, Transformer

–
1
1

–
2
0
1
2
-1

2
-0

5
–

m
a
in

–

15/64

Ether aka. Event Pool

Definition. Let S = (T,C, V, atr) be a signature with signals
and D a structure.

We call a structure (Eth, ready ,⊕,⊖, [·]) an ether over S and D
if and only if it provides

• a ready operation which yields a set of events that are ready for a

given object, i.e.

ready : Eth ×D(C) → 2D(E)

• a operation to insert an event destined for a given object, i.e.

⊕ : Eth ×D(C) ×D(E) → Eth

• a operation to remove an event, i.e.

⊖ : Eth ×D(E) → Eth

• an operation to clear the ether for a given object, i.e.

[·] : Eth ×D(C) → Eth.

–
1
1

–
2
0
1
2
-1

2
-0

5
–

S
st

m
se

m
–

16/64

Ether: Examples

• A (single, global, shared, reliable) FIFO queue is an ether:

• Eth:

• ready :

• ⊕:

• ⊖:

• [·]:

• One FIFO queue per active object is an ether.

• Lossy queue.

• One-place buffer.

• Priority queue.

• Multi-queues (one per sender).

• Trivial example: sink, “black hole”.

• . . .

–
1
1

–
2
0
1
2
-1

2
-0

5
–

S
st

m
se

m
–

17/64

15.3.12 StateMachine [OMG, 2007b, 563]

• The order of dequeuing is not defined,

leaving open the possibility of modeling

different priority-based schemes.

• Run-to-completion may be implemented

in various ways. [...]

–
1
1

–
2
0
1
2
-1

2
-0

5
–

S
st

m
se

m
–

18/64

Ether and[OMG, 2007b]

The standard distinguishes (among others)

• SignalEvent [OMG, 2007b, 450] and Reception [OMG, 2007b, 447].

On SignalEvents, it says

A signal event represents the receipt of an asynchronous signal instance. A
signal event may, for example, cause a state machine to trigger a transi-
tion. [OMG, 2007b, 449]
[...]

Semantic Variation Points
The means by which requests are transported to their target depend on the
type of requesting action, the target, the properties of the communication
medium, and numerous other factors.

In some cases, this is instantaneous and completely reliable while in others
it may involve transmission delays of variable duration, loss of requests,
reordering, or duplication.

(See also the discussion on page 421.) [OMG, 2007b, 450]

Our ether is a general representation of the possible choices.

Often seen minimal requirement: order of sending by one object is preserved.
But: we’ll later briefly discuss “discarding” of events.–

1
1

–
2
0
1
2
-1

2
-0

5
–

S
st

m
se

m
–

19/64

References

–
1
1

–
2
0
1
2
-1

2
-0

5
–

m
a
in

–

63/64

References

[Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object modeling
with statecharts. IEEE Computer, 30(7):31–42.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version
2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal/07-11-02.

–
1
1

–
2
0
1
2
-1

2
-0

5
–

m
a
in

–

64/64

