Sdtware Design, Modelling andAnalysisin UML

Lecdure 12: Core Sate Machines il

20111211

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Fla:=0

* We have to formally define what event occurrence is.

= We have to define where events are stored — what the event pool is.

« We have to explain how transitions are chosen — “matching”

» We have to explain what the effect of actions is - on state and event po

+ We have to decide on the granularity — micro-steps, steps,
run-to-completion steps (aka. super-steps)?

« We have to formally define a notion of stability and RTC-step completion.

© And then: hierarchical state machines.

1308

450

m

Contents & Goals

Last Lecture:
« The basic causality model

© Ether

Lecture:

Educational Objectives: Capabilities for following tasks/questions.

» What does this State Machine mean? What happens if | inject this event?
+ Can you please model the following behaviour.

» What is: Signal, Event, Ether, Transformer, Step, RTC.

Content:
« System Configuration, Transformer

« Examples for transformer
* Run-to-completion Step
o Putting It All Together

Roadmap: Chrondogically

What do we (have to) cover?
UML State Machine Diagrams Syntax.

Def.: Signature with signals.
Def.: Core state macl
(iv) Map UML State Machine Diagrams — N

,\8 core state machines. s il oo ¢
S = (T V)

Semantics: o
The Basic Causality Model M=(S2 A

Def.: Ether (aka. event pool) L

Def.: System configura
Def.: Event.
Def.: Transformer.

o

Def.; step, run-to-completion step.

(xii) Later: Hierarchical state machines. 50

System Configuration, Ether, Transformer

__Ether aka. Event Pod

Definition. Let .7" = (7%, V, aty]be a signature with signals
and Z a structure.

We call a sereSiere (Eth, ready, &, &

if and only if it provides

-]) an ether over . and 2

« a ready operation which yields a set of events that are ready for a
o ot ot i o bt i & el of
ki o St~ ingtointe

ready : ms x @@ — 22(8)

given object,

* a operation to insert an event destined for 7 given object, i
G o duok,
5: m; x 9@ x 2(6) — Bth g o P2

* a operation to remove an event,

©: Eth x 2(8) — Eth
« an operation to clear the ether for a given object, i.e.

Bth x 9(€) — Bth.

& 16764
! /60
Y
sy | |G| Ve T @v&;ﬁ.
5 O
,wuummiw_ 10,67, Sty bh}, Fdiring) €D, ?m&v w.hﬂ&
ol Ailat-
P(1ht Sp 3, FCET, g sty ks, o S, s €, , i o,
$ ¢ iy, shile, sk, pocsg, poams3, ERO, .\IP:W\ m@.&
D (ud] wuv.?m. if B s durel TiFO
D)= fsn 2t —
o oA
= oS / N
3 insbuce of T)
3 i

e fon 0y
&= sW»ﬂﬂr».v .Lh.!v?)._:\ e

Ether and[OMG, 20074

The standard distinguishes (among others)
+ SignalEvent [OMG, 2007b, 450] and Reception [OMG, 2007b, 447].

recafpliv- Lt place’, s:evend
On m.w:a.m<w:§§\w&\ i k,ﬂe\\ka\.k W
A signal event represents the receipt of an asynchronous signal instance. A
signal event may, for example, cause a state machine to trigger a transi-
tion. [OMG, 2007b, 449]
[-] e
Semantic Variation Points,
The means by which@equestdare transported to their target depend on the
type of requesting action, the target, the properties of the communication
medium, and nimerous other factors.
In some cases, this is'instantaneous;and completely reliable while in others
it may involve ransmission delays, of variable duration, loss of requests,
reordering, or duplication
(See also the discussion on page 421.) [OMG, 2007b, 450]

Our ether is a general representation of the possible choices.
Often seen minimal requirement: order of sending by one object is preserved.

But: we'll later briefly discuss “discarding” of events. o

System Configuration Sep-by-Step

« We start with some signature with signals % = (%, 6o, V. atro, &).

« A system configuration is a pair (o, €) which
comprises a system state o wrt. . (not wrt. .%p).

» Such a system state o wrt. .% provides, for each object u € dom(o),

« values for the explicit attributes in Vp,

attributes, namely

+ values for a number of imp
y flag, i.e. o(u)(stable) is a boolean value,

e acurrent (state machine) state, i.e. o(u)(st) denotes one of the
states of core state machine M,

« a temporary association to access event parameters for each class,
i.e. o(u)(params) is defined for each £ € &.

« For convenience require: there is no link to an event except for params .

10760

System Configuation

1- s

Definition. Let % = (%, 6o, Vo, atro, &) be a signature with signals,
9y a structure of ., (Bth, ready, &, S, [-]) an ether over % and 7.
Furthermore assume there is one core state machine M per class C € €.

A system Sa_m.:ag% over ., %, and Eth is a pair

Ao e o
of whes Et? € (g,e) € £% x Bth .\\k?.\rss?ew
where / \\.\ fale T A

R skl
S =(%HU{Smc | C B}, %, t?«&m.\m

Vo C {(stable : Bool, \Pﬁ% o - e

U {(stc : Snp,+,50,0) | C € €} o spm/ ot

. (ot st wue 2t o A]

U {{paramsg : Eo.1,+,0,0) | E € &}, i oleg b @S pj/
{C atro(C)

U {stable, stc} U {paramsy | E € &} | C € €}, &)

D T .
« 9= 30 (Suo - S(Mo) | C €6}, and “shie of S ol

Definition.
Let (0,) be a system configuration over some .%, 2y, Eth.

We call an object u € dom(a) N Z(%p) stable in o if and only if

o (u)(stable) = true.

1160

Events Are Instances of Sgnds Sgnds? Events...? Ether...?! Where are we?

Definition. Let Z be a structure of the signature with signals The idea is the following: (semr Mb.ut“szﬂk&.ﬂ«;
o = (T, 6o, Vp, atro, &) and let E € & be a signal. « Signals are types (classes). « Wanted: a labelled transition relation
Let atr(E) = e Un}. W | . . . cons, Sn
G) = oo @al) WG « Instances of signals (in the standard sense) are kept in the system (0,6) LD, (o1, ¢)
e=(E {vi—di,...,v,—dy}), state component o of system configurations (o,).

on system configuration, labelled with the consum
Identities of signal instances are kept in the ether. (o,') being the result (or effect) of one object u, taking a transition

= of its state machine from the current state mach. state o(u,)(stc).
(B, (dy,...,dyn)) or (E,d), Each signal instance is in particular an event — somehow “a recording () (ste)

that this signal occurred” (without caring for its identity)

or shorter (if mapping is clear from context)

Have: system configuration (o,) comprising current state macl

an event (or an instance) of signal E (if type-consistent). and stability flag for each object, and the ether

We use Eus(&, %) to denote the set of all events of all signals in « The main difference between signal instance and event:

o wrt. Z. Events don't have an identity. « Plan:

(i) Introduce transformer as the semantics of action annotions.
Inti ely, (¢/,€') is the effect of applying the transformer
of the taken transition.

Explain how to choose tran

ons of behaviour,
stance, but only

Why is this useful? In particular for reflective desc
H we are typically not interested in the identity of a signal

<,‘ As we always try to maxi

« By our existing naming convention, u € %(E) is also called instance of the

ions depending on < and when to stop taking

g (signal) class E in system configuration (o, <) if u € dom(o). H whether it is an “E" or "F"", and which parameters it carries.] itions — the run-t ion
£+ The corresponding event is then (E, () - 8 . o
Transformer ecue o pon e Why Transformers? b A filloty, e cantdarn
Definition + Recall the (simplified) syntax of transition annotations:
Let £2 the set of sysfem configurations over some %, 7o, Eth. annot == [(event) [[(guard) 7] [*/' (action)]] >Rq « § ie]
y objuct “execitie Ho achia,
We call a relation ‘\t:. e K V* ﬁ\w « Clear: (event) is from & of the corresponding signature. cm .&k;&h «Dﬂ\. Y niL \.{jeﬁo E XUy, _\n_\w
9 2
tC 9(F) x (X5 x MSWNAM& x Eth) « But: What are (guard) and (action)? 0} sod (epur, £, 090) | s o, € Celp, ﬁAMW
a (system configuration) transformer. Ngeka &J&\&.&F Sefore » UML can be viewed as being parameterized in expression language é € Qi Ce <
(providing (guard)) and action language (providing (action)). v MA_WL.“A ! 3!,; ! il CeC,v F\W
« In the following, we assume that each application of a transformer ¢ to « Examples: uf desoy (04e) | o € 0L}
some system configuration (g, ¢) for object u, is mmmomagﬁ,@ a set of « Expression Languag
i sonles & Silout
observations 7w P S A ey - ocL) Grpry: AL epeslas o ¥
Obsfu(0,¢) € 271 < oe & - B2y a(6). Lty - Java, C++, ... expressions b
H N it O receibes o Loind, -

e Action Language:
UML Action Semantics, “Executable UML"
- Java, C++, ... statements (plus some event send action)

o An observation (tsre, tie, (B, d), uas) € Obsi[u,)(0,)
represents the information that, as a “side effect” of u, executing t,
an event (1) (E,d) has been sent from . to tgss.

Special cases: creation/destruction. o
' 15/50 16/50

Transformer Examples: Presentation

Expresson/Action Languag Examples

Transformers as Abstract Actions!

We can make the assumptions from the previous slide because instances exist: abstract syntax concrete syntax

op

ive semantics

In the following, we assume that we're given

« an expression language Eapr for guards, and <
for OCL, we have the OCL semantics from Lecture 03. Simply remove the intui

pre-images which map to “L"

« an action language Act for actions,
well-typedness

for Java, the operational semantics of the SWT lecture uniquely defines trans-

formers for sequences of Java statements. . .
: et “eeihin acka op
semantics ’d

« a semantics for boolean expressions in form of a partial function ﬁm&t\&,\/\xf
101) Bopr — (52 = ([T 2(9))) t./@|\ We distinguish the following kinds of transformers: (0., Ewwi € toplu] ff ..
topltta] (0,2) = {(c”,2)} where ...

« skip: do nothing — recall: this is the default action

and that we're given

en system configuration,

which evaluates expressions in a
observables

Obsop[u,] = {...}, not a relation, depends on choice

Assuming I to be partial is 2 way to treat “undefined” during runtime. IF I is not um._u.u do%_mm c— _am”mm::w_ because state machines are built around
. ; : o e sending/consuming events
defined (for instance because of dangling-refe navigation or di by-zero), we e, €

want to go to a designated “error” system configuration.

create/destroy: modify domain of o — not specific to state machines, but (error) conditions

let's discuss them here as we're at it

Not defined if ...

« a transformer for each action: for each act € Act, we assume to have

tact © 2(€) x (£% x Eth) x (£% x Eth)

update: modify own or other objects’ local state — boring

m

20750

ie takl LonSoe) 2~

21/60

0 1760 i 1860 19/60
Transformer: Skip Transformer: Update Update Transformer Example s
SMe ilt
abstract syntax concrete syntax abstract syntax concrete syntax iz eKl2 J Yole
skip Ship update(expr,, v, expry) O,V 2ol (bt AP
intuitive semantics
) Update attribute v in the object denoted by expr, to the value
clo e denoted by cupr update(eapry, v, capry)
well-typedness . : well-typedness ———————— X o= . . B, e
¥ c andety s R) 0 el
p— o™ ?&_ s , eapr,. expr, obey visibility and navigability
Kells < (5,6) semantics

Hual(o,€) = {(o,)} tepssaamry e 1a1(0:0) = (Y ot &
observables e — X4 TS Y=y,

Obsespli)(0,2) = where o' = o[u i o(u)[v i Tezpr,] (o, B)]] with (v o cx o) . w:C \/I\/v O

Obssspluial (0, € u = Ifecfry)(o.)18 = {this — u,}. o | = o
(error) conditions bservabl z=4 Llss) < z=

. I ObSupaate(capry v, cpr) 105 Ay e el A y=0 fm M qu'«) Hﬁk.«.&kmhuslg y=0
H (ervor) conditions i FluRolLx b + \.\(I\n.u]
3 Not defined if I[eapry] (0.) or I[expry](a. §) not defined f.\unf\
T xB () + TG

=4 1

<
22/0

20111211 - main -

References

5950

201121

2

References

[Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object modeling
with statecharts. IEEE Computer, 30(7):31-42.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version
2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal/07-11-02.

6070

