2013.01.08 - mai

Software Design, Modelling and Analysisin UML

Lecture 15: Hierarchical State Machines |

2013-01-08

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

UML Sate-Machines: What do we have to cover?

[Stérrle, 2005]

[ty

Contents & Goals

Last Lecture: e
+ RTC-Rules: Discard, Dispatch, Commence. () =5 Giz)

+ Step, RTC, Divergence

o Putting It All Together — 0Ds fou iwihiol snde

« Rhapsody Demo

This Lecture:
« Educational Objectives: Capabilities for following tasks/questions.

* What does this State Machine mean? What happens if | inject this event?
« Can you please model the following behaviour.
* What is:
* What does this hierarchical State Machine mean? What may happen if |

inject this event?

What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state, ..

ial state.

« Content:
. « Hierarchical State Machines Syntax
25
The Full Sory
UML distinguishes the following kinds of states:
example example
pseudo-state
vesered _ bagond initial .
simple state (shallow) history
las o) £ deep history
fork/join
final state
composite state junction, choice
OR entry point
exit point
H i a5
3 AND terminate ¢
B submachine state
5734

2013.01.08 - mai

Hierarchical State Machines

354
Representing All Kinds of States
« Until .awu\ - ST w\nﬁ M&.&s;
(s. &lﬂ s0€8,— C8x(EU{)) x Bapryy x Acty x 8
] —_—
et .WQ At lebet
“ bod
5. JEL /S, $
& G
Fley

Representing All Kinds of States “ @@ (D

« Until now:

(S,80:—), $0E€S,— C8x(EU{) x Bapry x Acty x § s

» From now on: (hierarchical) state machines

(S, kind, region, =», v, annot) S,
where (bl macde'ne) = 4
© 5D {top} is a finite set of States (as before),
o kind : S — {st, init, fin, shist, dhist, fork, join, junc, choi, ent, exi, term}
is a function which labels states with their kind, (new)
o region : S — 22° is a function which characterises the regions of a state,
.Wsﬁ of shs of <hikes (new)
i o =is a set of trapsk sehs f St Hetiuahln shs (changed)
B o ¢ : (=) — 25 x 2%7is an incidence function, and (new)yp)
: « annot : (=) — (6 U{ }) x Epr., x Act» provides an annotation for
g e 7
z each transition. T e (new).)
L (sg is then redundant — replaced by proper state (!) of kind ‘init'.)
' 650
From UML to Hierarchical Sate Machines:. By Example
(S, kind, region, —,), annot) |
example es kind region
simple state s | s £ [
(ol vl |
final state @ E\Vw fin &
composite state an
OR s st ,mmﬂ: S uwww
Tegion
/
AND s o N«Mbiw. Mb‘k&\
fsuff
t‘ submachine state
g pseudo-state q |t sk, .. '3
2 —
) for short €F \TTQ st/

Tsa

o (fabd, {64,007)

° Awn_m:nw\ m&\vbw\
[86(a8), 605 605

@.\AL® o (feas, §9,

v (i, £4e3) \

From UML to Hierarchical Sate _,_mn:_ nes. By Example

— — — - = — T
I
| UOZ.H_rv (DON'TY (&) becanre
| “S_m&wai | 5
g ' &/
(

A i E::;\.@

S R =
d, on, —, 1, annot) = F.nc &

(e, &), Gt), i), (o)

AN

fhepids,s520), sng, s,ne, swi Isif, ,u.:.iw <

(L (15.58), 40 @3501) 1. e

{t (o g, o), y.‘t awt §)

... translates to (S,

/_ V~mHv
"@-@-E) ok
W\Iﬁl $ et e,
(S1%:2) (it o, vt |
ndvas Mr.«rs vxc
M \
Jomshon bﬂo_sx ,V;.L‘)vu_v&! ~
o Mwwxbﬁ
2o,

wit

() 2y (o15)

\\&ll-Formedness: Regions (follows from diagram)

| €S kind
simple state s st
final state fin
composite state st {S1,..,8,},n>1 |Su---US,
pseudo-state s nit, ... 0 0
implicit top state | top st {81} S1
i
» Each state (except for top) lies in exactly one region, Nm.)ﬂv B
o States s € S with kind(s) = st may comprise regions. \ @
= No region: simple state.
« One region: OR-state. ={y.s 5,58
« Two or more regions: AND-state.
« Final and pseudo states don’t comprise regions.
@S%Tmﬁ %:..:M
« The region function induces a child function. fsrsaf

[

Gl e (exl fn Yp) L i Oty au .
Tllows fromm \4.._%.2 becapse wt way wol digsy.

Initial Pseudostates and Final Sates

Well-Formedness: Initial Sate (requirement on diagram)

» Each non-empty region has a(reasonabld initial state and at least one

transition from there, i.e.

o for each s € S with region(s) = {S1,...,5.}, n > 1, foreach 1 <i <n,

o there mx_mpmwuwwmq one initial pseudo-state (s, init) € S; and

at least one transition ¢ €— with s as source,
« and such transition's target sb is in S;, and

(for simplicity!) kind(sh) = st, and

annot(t) = (_, true, act).

= No ingoing transitions to I states.

No outgoing transitions from final states.

9
<]
=
=

Recall

013.01.08

P/ T

1054
Initial Pseudostate
b eific
o Jact,
Aol 7
Principle: il te b
 when entering a region without a specific destination state,
© then go to a state which is destination of an ini n transi .
« execute the action of the chosen initiation transitions between exit and
entry actions.of s aud dehuckin. (oh,).
1354

1275

Plan p—

il .
(shallow) istory ®

deep history.

fork/join

junction, choice

OR

entry point

exit point

terminate

state

« Initial pseudostate, final state.
« Composite states.

« Entry/do/exit actions, internal transitions.

istory and other pseudostates, the rest.

115

(50} annot

Principle: o = —
« when entering a region without a specific destination state,

» then go to a state which is destination of an ation tran:

o execute the action of the chosen initiation transitions between exit and
entry actions.

Special case: the region of top.
 If class C has a state-machine, then “create-C' transformer” is the
concatenation of
@ the transformer of the “constructor” of C' (here not introduced explicitly) and
« a transformer corresponding to one initiation transition of the top region.

135

Towards Final Sates: Completion of States

8 - Sinifin

mnnn
s1 - Jach 52 53

« Transitions without trigger can conceptionally be viewed as being sensitive for
the “completion event”.

« Dispatching (here: E) can then alternatively be viewed as
(i) fetch event (here:) from the ether,

(ii) take an enabled transition (here: to s;

iii) remove event from the ether,

(iv) after having finished entry and do action of current state (here: s2) — the state is
then called completed —,

(v) raise a completion event — with strict priority over events from ether!

ve for the completion event,

(vi) if there is a transition enabled which is sen:
o then take it (here: (s2,53)).
« otherwise become stable.
14/54

References

5354

Final Sates

o If
« a step of object u moves u into a final state (s, fin), and

o all ing regions are in a final state,
then (conceptionally) a completion event for the current composite state s is
raised.

o If there is a transition of a parent state (i.e., inverse of child) of s enabled
which is sensitive for the completion event,
« then take that transition,
« otherwise
~ adjust (2.) and (3.) in the semantics accordingly
-/

u

30108

1575

References

[Crane and Dingel, 2007] Crane, M. L. and Dingel, J. (2007). UML vs. classical vs. rhapsody
statecharts: not all models are created equal. Software and Systems Modeling,
6(4):415-435.

[Damm et al., 2003] Damm, W., Josko, B., Votintseva, A., and Pnueli, A. (2003). A formal
semantics for a UML kernel language 1.2. IST/33522/WP 1.1/D1.1.2-Part1, Version 1.2

[Fecher and Schénborn, 2007] Fecher, H. and Schénborn, J. (2007). UML 2.0 state
machines: Complete formal semantics via core state machines. In Brim, L., Haverkort,

B. R., Leucker, M., and van de Pol, J., editors, FMICS/PDMC, volume 4346 of LNCS,
pages 244-260. Springer.

[Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object modeling with
statecharts. IEEE Computer, 30(7):31-42.

[Harel and Kugler, 2004] Harel, D. and Kugler, H. (2004). The rhapsody semantics of
statecharts. In Ehrig, H., Damm, W., GroBe-Rhode, M., Reif, W., Schnieder, E., and

3 . E., editors, ion of Software Techniques for Applications
in Engineering, number 3147 in LNCS, pages 325-354. Springer-Verlag.
< [OMG, 2007] OMG (2007). Unified modeling language: Superstructure, version 2.1.2
Technical Report formal /07-11-02
[Stérrle, 2005] Stérrle, H. (2005). UML 2 fiir Studenten. Pearson Studium

- 15 2013.01.08 - Sintin -

Final States

b
o @

o If
= a step of object u moves u into a final state (s, fin), and
« all sibling regions are in a final state,
then (conceptionally) a completion event for the current composite state s is
raised.
« If there is a transition of a parent state (i.e., inverse of child) of s enabled
which is sensitive for the completion event,
o then take that transition,
« otherwise kill u
~ adjust (2.) and (3.) in the semantics accordingly

+ One consequence: u never survives reaching a state (s, fin) with s € child(top).

« Now: in Core State Machines, there is no parent state.

o Later: in Hierarchical ones, there may be one.

155

