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UML Sate-Machines: What do we have to cover?

[Stérrle, 2005]
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Contents & Goals

Last Lecture: e
+ RTC-Rules: Discard, Dispatch, Commence. () =5 Giz)

+ Step, RTC, Divergence

o Putting It All Together — 0Ds fou iwihiol snde

« Rhapsody Demo

This Lecture:
« Educational Objectives: Capabilities for following tasks/questions.

* What does this State Machine mean? What happens if | inject this event?
« Can you please model the following behaviour.
* What is:
* What does this hierarchical State Machine mean? What may happen if |

inject this event?

What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state, ..

ial state.

« Content:
. « Hierarchical State Machines Syntax
25
The Full Sory
UML distinguishes the following kinds of states:
example example
pseudo-state
vesered _ bagond initial .
simple state (shallow) history
las o) £ deep history
fork/join
final state
composite state junction, choice
OR entry point
exit point
H i a5
3 AND terminate ¢
B submachine state
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Representing All Kinds of States
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Representing All Kinds of States “ @@ (D

« Until now:

(S,80:—), $0E€S,— C8x(EU{) x Bapry x Acty x § s

» From now on: (hierarchical) state machines

(S, kind, region, =», v, annot) S,
where (bl macde'ne) = 4
© 5D {top} is a finite set of States (as before),
o kind : S — {st, init, fin, shist, dhist, fork, join, junc, choi, ent, exi, term}
is a function which labels states with their kind, (new)
o region : S — 22° is a function which characterises the regions of a state,
.Wsﬁ of shs of <hikes (new)
i o =is a set of trapsk sehs f St Hetiuahln shs (changed)
B o ¢ : (=) — 25 x 2%7is an incidence function, and (new)yp )
: « annot : (=) — (6 U{ }) x Epr., x Act» provides an annotation for
g e 7
z each transition. T e (new).)
L (sg is then redundant — replaced by proper state (!) of kind ‘init'.)
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From UML to Hierarchical Sate Machines:. By Example
(S, kind, region, —, ), annot) |
example es kind region
simple state s | s £ [
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final state @ E\Vw fin &
composite state an
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From UML to Hierarchical Sate _,\_mn:_ nes. By Example
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\\&ll-Formedness: Regions (follows from diagram)

| €S kind
simple state s st
final state fin
composite state st {S1,..,8,},n>1 |Su---US,
pseudo-state s nit, ... 0 0
implicit top state | top st {81} S1
i
» Each state (except for top) lies in exactly one region, Nm.)ﬂv B
o States s € S with kind(s) = st may comprise regions. \ @
= No region: simple state.
« One region: OR-state. ={y.s 5,58
« Two or more regions:  AND-state.
« Final and pseudo states don’t comprise regions.
@S%Tmﬁ %:..:M
« The region function induces a child function. fsrsaf

[



Gl e (exl fn Yp) L i Oty au .
Tllows fromm \4.._%.2 becapse wt way wol digsy.

Initial Pseudostates and Final Sates

Well-Formedness: Initial Sate (requirement on diagram)

» Each non-empty region has a(reasonabld initial state and at least one

transition from there, i.e.

o for each s € S with region(s) = {S1,...,5.}, n > 1, foreach 1 <i <n,

o there mx_mpmwuwwmq one initial pseudo-state (s, init) € S; and

at least one transition ¢ €— with s as source,
« and such transition's target sb is in S;, and

(for simplicity!) kind(sh) = st, and

annot(t) = (_, true, act).

= No ingoing transitions to I states.

No outgoing transitions from final states.

9
<]
=
=

Recall
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Initial Pseudostate
b eific
o Jact,
Aol 7
Principle: il te b
 when entering a region without a specific destination state,
© then go to a state which is destination of an ini n transi .
« execute the action of the chosen initiation transitions between exit and
entry actions.of s aud dehuckin. (oh,).
1354

1275

Plan p—

il .
(shallow) istory ®

deep history.

fork/join

junction, choice

OR

entry point

exit point

terminate

state

« Initial pseudostate, final state.
« Composite states.

« Entry/do/exit actions, internal transitions.

istory and other pseudostates, the rest.

115

(50} annot

Principle: o = —
« when entering a region without a specific destination state,

» then go to a state which is destination of an ation tran:

o execute the action of the chosen initiation transitions between exit and
entry actions.

Special case: the region of top.
 If class C has a state-machine, then “create-C' transformer” is the
concatenation of
@ the transformer of the “constructor” of C' (here not introduced explicitly) and
« a transformer corresponding to one initiation transition of the top region.
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Towards Final Sates: Completion of States

8 - Sinifin

mnnn
s1 - Jach 52 53

« Transitions without trigger can conceptionally be viewed as being sensitive for
the “completion event”.

« Dispatching (here: E) can then alternatively be viewed as
(i) fetch event (here: ) from the ether,

(ii) take an enabled transition (here: to s;

iii) remove event from the ether,

(iv) after having finished entry and do action of current state (here: s2) — the state is
then called completed —,

(v) raise a completion event — with strict priority over events from ether!

ve for the completion event,

(vi) if there is a transition enabled which is sen:
o then take it (here: (s2,53)).
« otherwise become stable.
14/54

References
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Final Sates

o If
« a step of object u moves u into a final state (s, fin), and

o all ing regions are in a final state,
then (conceptionally) a completion event for the current composite state s is
raised.

o If there is a transition of a parent state (i.e., inverse of child) of s enabled
which is sensitive for the completion event,
« then take that transition,
« otherwise
~ adjust (2.) and (3.) in the semantics accordingly
-/

u
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Final States

b
o @

o If
= a step of object u moves u into a final state (s, fin), and
« all sibling regions are in a final state,
then (conceptionally) a completion event for the current composite state s is
raised.
« If there is a transition of a parent state (i.e., inverse of child) of s enabled
which is sensitive for the completion event,
o then take that transition,
« otherwise kill u
~ adjust (2.) and (3.) in the semantics accordingly

+ One consequence: u never survives reaching a state (s, fin) with s € child(top).

« Now: in Core State Machines, there is no parent state.

o Later: in Hierarchical ones, there may be one.
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