— 02 — 2013-10-23 — main

Software Design, Modelling and Analysis in UML

Lecture 02: Semantical Model

2013-10-23

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 02 — 2013-10-23 — Sprelim —

Last Lecture:
Motivation: model-based development of things (houses, software) to cope
with complexity, detect errors early

Model-based (or -driven) Software Engineering

UML Mode of the Lecture: Blueprint.

This Lecture:

Educational Objectives: Capabilities for these tasks/questions:

Why is UML of the form it is?
Shall one feel bad if not using all diagrams during software development?

What is a signature, an object, a system state, etc.?
What's the purpose of signature, object, etc. in the course?

How do Basic Object System Signatures relate to UML class diagrams?

Content:
Brief history of UML
Course map revisited
Basic Object System Signature, Structure, and System State

2/23

— 02 - 2013-10-23 — main

Why (of all things) UML?

3/23

Why (of all things) UML?

— 02 — 2013-10-23 — Shistory —

Note: being a modelling languages doesn’'t mean being graphical
(or: being a visual formalism [Harel]).
For instance, [Kastens and Biining, 2008] also name:
Sets, Relations, Functions
Terms and Algebras
Propositional and Predicate Logic
Graphs
XML Schema, Entity Relation Diagrams, UML Class Diagrams
Finite Automata, Petri Nets, UML State Machines

Pro: visual formalisms are found appealing and easier to grasp.
Yet they are not necessarily easier to write!

Beware: you may meet people who dislike visual formalisms just for
being graphical — maybe because it is easier to “trick” people with a
meaningless picture than with a meaningless formula.

More serious: it's maybe easier to misunderstand a picture than a formula.

A Brief History of UML

o Boxes/lines and finite automata are used to visualise software for ages.

» 1970’s, Software Crisis™

— ldea: learn from engineering disciplines to handle growing complexity.

Languages:

Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

« Mid 1980's: Statecharts [Harel, 1987], StateMate™ [Harel et al., 1990]

add(Object) : void

insert(int, Object) ; void

|
g
:
I
G
‘ 5/23
A Brief History of UML
o Boxes/lines and finite automata are used to visualise software for ages.
» 1970’s, Software Crisis™
— ldea: learn from engineering disciplines to handle growing complexity.
Languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams
« Mid 1980's: Statecharts [Harel, 1987], StateMate™ [Harel et al., 1990]
» Early 1990’s, advent of Object-Oriented-Analysis/Design/Programming
— Inflation of notations and methods, most prominent:
¢ Object-Modeling Technique (OMT) [Rumbaugh et al., 1990]
A Generalization / Inheritance List
§ Class operation J Class attribute add(Objact) - void
italic Abstract class / Abstract operation insert(int, Object) - void .
Association f Link N gelfint) - Object Stop)
I Multiplicity : optional getSze).: ind [Pause]
> —=0 S'I:;\::Is:t:r [Data requested] é.:gﬂr&umsl o
2 @ Mulipioty:;meny ning Unpause] o wait SR
= Aggregation
wn
| [Continue]
;: next LinkedList ArrayList (:}: http://wikimedia.org (CC nc-sa 3.0, User:AutumnSnow)
g Entry size int=0 elements | Array ;U
o $MAX_SIZE int = 100]
header add(Object) - void =
= next: Entry °
I o

O

insert(int, Object) : void

get(int) : Object

5/23

— 02 — 2013-10-23 — Shistory —

A Brief Histg I e -
A) \I ! KasseP | [
» Boxes/lines g = . s [ages.
g 2= o Rt .
& = 3 5
L T T a 5
e 1970’s, Soft Y KiasseA 1o T I _— ~ G4 KasseP | -
| \ \ (P a £ .
— ldea: lear e W o 0 asses i 2 blexity.
. JH lasse] %
Languages: /‘ @i i i s lams
o
Md 1980 r’r‘ L5 W Abstrakte Klasse %‘J | 1990
L J | ,S: \ % ——— Assoziation = i,
) KasseC ‘{_\ - Wererbung é]
L o e—— Eigentum = .
o Early 1990’s - O Verwendung “hamming
— Inflation ¢ £

e Object-Modeling Technique (OM 1) |Rumbaugh et al., 1990]
e Booch Method and Notation [Booch, 1993]

5/23

A Brief History of UML

— 02 — 2013-10-23 — Shistory —

Boxes/lines and finite automata are used to visualise software for ages.
1970’s, Software Crisis™
— ldea: learn from engineering disciplines to handle growing complexity.

Languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams
Mid 1980's: Statecharts [Harel, 1987], StateMate™ [Harel et al., 1990]
Early 1990’s, advent of Object-Oriented-Analysis/Design/Programming

— Inflation of notations and methods, most prominent:

¢ Object-Modeling Technique (OMT) [Rumbaugh et al., 1990]
e Booch Method and Notation [Booch, 1993]
o Object-Oriented Software Engineering (OOSE) [Jacobson et al., 1992]

Each “persuasion” selling books, tools, seminars. ..

Late 1990’s: joint effort UML 0.x, 1.x

Standards published by Object Management Group (OMG), “international,
open membership, not-for-profit computer industry consortium” .

Since 2005: UML 2.x 5/23

UML Overview [oma, 2007b, 684]

— 02 — 2013-10-23 — Shistory —

OCI_ Diagram
[1
Structure Behavior
Diagram Diagram
! T ; [[¥
. Component Object Activity Use Case State Machine
Class Diagram Diagram Diagram Diagram Diagram Diagram
Composite
Structure Deployment Package Interaction
Diagram Diagram Diagram Diagram
A
! [
Sequence Irgeracvtlon
Diagram verview
Diagram
Communication Timing
Diagram Diagram
Figure A.5 - The taxonomy of structure and behavior diagram

6/23

Common Expectations on UML

— 02 — 2013-10-23 — Shistory —

o Easily writeable, readable even by customers

o Powerful enough to bridge the gap between idea and implementation
o Means to tame complexity by separation of concerns (“views")

o Unambiguous

» Standardised, exchangeable between modelling tools

o UML standard says how to develop software

o Using UML leads to better software

We will see...

Seriously: After the course, you should have an own opinion on each of these claims.
In how far/in what sense does it hold? Why? Why not? How can it be achieved?
Which ones are really only hopes and expectations? ...7

7/23

Course

Map Revisited

|
5
E
|
o
Q
=)
S
o
i
2
5
|
o
S
|
8/23
Diagram Diagram
Recall: B 5
.
e Overall aim: a for.mal language ctass ovagram ‘ componen ‘ ‘ P ‘ ‘ pevay ‘
for software blueprints. | ‘
« Approach: T | [epmm s e
(i) Common semantical domain.
I
" roence nteraction
(ii) UML fragments as syntax. Seauenc S
(iii) Abstract representation of ‘ ‘ ‘
diagrams. i Timing
~ N Diagram
(iv) Informal semantics: - w .
UML standard ‘],
q " . CD, SM p e OCL CD, SD s
(v) assign meaning to diagra \0
(vi) Define, e.g., consistency. 4,5__?3\ # %
expr 7, SD
.
B = (Qsp, 40, Aw,—sp, Fsp)
|
5 (conso,Sndo)
b5 T =Yoo, — (01,€1) -+ <" wr = ((04, consi, Snd;)) ;e
N o
|
©
Q@
S G=(N,E,f)
)
i
Q
| oD
o
S
I
923

UML: Semantic Areas

— 02 — 2013-10-23 — Sleplan —

— 02 — 2013-10-23 — main —

Activities State Machines Interactions
Actions
Inter-Object Behavior Base Intra-Object Behavior Base
Structural Foundations g
Figure 6.1 - A schematic of the UML semantic areas and their dependencies

[OMG, 2007b, 11]

Common Semantical Domain

10/23

1123

Basic Object System Sgnature

— 02 — 2013-10-23 — Ssemdom —

a)
Definition. A (Basic) Object System Signature is a quadruple
= €. t
& = (€, V, air) T&Jm clwe [De
where e e o O_L\Q‘ZWA{
o T i t of (basic) types, .
is a set of (basic) types {W’E' o .
o % is a finite set of classes, 'Dm N @
o V is a finite set of typed attributes/i.e., each v € V has type
o TE T or (b D© D]
o C C,, where C € €
s e ey, i oo o
: ' T Aol N~ T 3D, D 1D}
i o atr: € —>EZ maps each class to its set of attributes.
AN AN Y,
total fomchian pasenct of V/
7 Note: Inspired by OCL 2.0 standard [OMG, 2006], Annex A.
T 12/23
Basic Object System Sgnature Example
& = (7,%,V, atr) where
o (basic) types .7 and classes €, (both finite),
e typed attributes V, 7 from 7 or Cy 1 or Cy, C € €,
o atr : € — 2¥ mapping classes to attributes.
. § clasjes athiloutes 4 (c =3 ,Mf
R A L)5
V) has fype 6 V—r— ~—
So = ({Int}a {C,D},{$: [ntap : CO,lvn : C*},{C = {pa ’I”L},D e {ZE}})
}szsfo

13)23

Basic Object System Sgnature Another Example

— 02 — 2013-10-23 — Ssemdom

& = (7,%,V, atr) where
o (basic) types 7 and classes €, (both finite),
o typed attributes V', 7 from & or Cy; or Cy, C € €,

o atr : € — 2V mapping classes to attributes.

Example:

D5 s,

Basic Object System Structure

— 02 — 2013-10-23 — Ssemdom

-)

Definition. A Basic Object System Structure of
S =(7,%,V, atr)
is a domain functionﬂ@vwhich assigns to each type a domain, i.e.
o 7 € 7 is mapped to (1),

e C € € is mapped to an infinite set 2(C) of (object) identities.

Note: Object identities only have the “=" operation;
object identities of different classes are disjoint, i.e.
VYC,De¥:C#D— 2(C)Nn2(D)=.

o C, and Cy,; for C € € are mapped to 22(0),
We use Z(%) to denote | Jo ey Z(C); analogously 2(%.).

/

Note: We identify objects and object identities, because both uniquely deter-
mine each other (cf. OCL 2.0 standard).

(85,0500 L8, O v, fene

@95%53‘,

)

14/23

15/23

Basic Object System Sructure Example

— 02 — 2013-10-23 — Ssemdom —

Wanted: a structure for signature

0 = {Int},{C,D},{x: Int,p: Co1,n:C.},{C — {p,n},D — {z}})

Recall: by definition, seek a 2 which maps
o 7€ J to some 9(7),

e ¢ € € to some identities Z(C) (infinite, disjoint for different classes),

e C. and Cp; for C € € to 2(Coq1) = 2(C.) =229, aﬂ%@%‘,\a
honCe:
2(Int) =/ Q(Wf) o5-103,, 123
2(C) =Nt =5C] =16l D,(C 484,35,
=%2,%6, -
P(D) =N x [0 = s 20, %, %ﬁ% { f
c
%%ﬂ:%@)zzwmd 25)
D
D(Do1) =2(Dy) = 2&7(3} e

System Sate

2013-10-23 — Ssemdom —

— 02—

all o%f(% JO(X/\JD\L{’\& Q)aﬁ(;of,(

16/23

A system state of .#/wrt.

(\/\/\
a:9(€)» (V»(2(7)U2(%))).

1
« dom(c(u)) = atr(C) ﬁ
omm eg(r)ifv:r,TreT
. (a(uj(v) € 9(Dy) ifv:Dy;orv:D, withDe¥

We call u € 9(%) alive in o if and only if u € dom(o).

is a type-consistent mapping

7 parhol ahgw
Definition. Let 2 b¢ a structure of ¥ = (Z,%,V, atr).

We use %2 to denote the set of all system states of . wrt. 2.

VT tyes’ dowais

1723

System State Example

— 02 — 2013-10-23 — Ssemdom —

Signature, Structure:
S0 = ({Int},{C,D},{z: Int,p: Co1,n: Ci},{C — {p,n}, D — {x}})
92(Int) =72, 29(C)={1¢,2c¢,3¢c,...}, 2(D)={1p,2p,3p,...}

Wanted: o : 2(%¢) - (V -» (2(TF) U 2(%.))) such that
o dom(o(u)) = atr(C),
o o(w)(v) € D(r)ifv:T,Te€T, o ou)(v) € 2(Cy) ifv: Dy withDe¥

@mzﬁz‘/w%% oz Ly fo reac gt
962:§4C«H§PW%40§)“H§§C'GCg§/ :—05/\6.()[Ap has o
2, > xR ﬁj p—lik o (4(,)
(le + sl
[/\)(jo- EDL‘\
< Oé_GML 1 ’ﬁ‘[e«fS V{O
0={s i Tpr iR R g oégfeag S, Ce
g (:WZ{ \
18/23
System State Example

— 02 - 2013-10-23 — Ssemdom —

Signature, Structure:
o = ({Int},{C, D}, {x: Int,p: Cox,n: C.},{C — {p,n},D — {z}})
@(Int):Z, @(0)2{10720,30,...}7 @(D)={1D72D,3D,---}

Wanted: 0 : 2(%) » (V » (2(F) U 2(%.))) such that
o dom(o(u)) = atr(C),
o o(u)(v) € 2(r)ifv:7,7E€ T,
o o(u)(v) € 2(Cy) if v: Dy with D € € .

e Concrete, explicit:

UZ{E‘_\'—) {p—=0,n— {5c}},5¢ — {p—0,n+— 0}, 1p — {x — 23}}.

e Alternative: symbolic system state

o={c))— {p—0,n— {c2}},td— {p— 0,n— 0},d — {x — 23}}
assuming (c)féof € 2(C), d € (D), ¢1 # co.

1923

Course Map
CD, SM
= (Z,%.V, atr),

(consg,Sndg)
o) ———

You Are Here.

p € OCL

expr

uo

G:(N?E7f)

oD

<, 5D

P

= (Qsp,q0,As,—sp,Fsp)

(01,€1) -+ <> wr = ((04, consy, Snd;)); e

20/23

21/23

— 02 - 2013-10-23 — main —

— 02 - 2013-10-23 — main —

References

22/23

References

[Booch, 1993] Booch, G. (1993). Object-oriented Analysis and Design with Applications.

Prentice-Hall.

[Dobing and Parsons, 2006] Dobing, B. and Parsons, J. (2006). How UML is used. Communications
of the ACM, 49(5):109-114.

[Harel, 1987] Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231-274.

[Harel et al., 1990] Harel, D., Lachover, H., et al. (1990). Statemate: A working environment for the
development of complex reactive systems. IEEE Transactions on Software Engineering,
16(4):403-414.

[Jacobson et al., 1992] Jacobson, I., Christerson, M., and Jonsson, P. (1992). Object-Oriented
Software Engineering - A Use Case Driven Approach. Addison-Wesley.

[Kastens and Biining, 2008] Kastens, U. and Biining, H. K. (2008). Modellierung, Grundlagen und
Formale Methoden. Carl Hanser Verlag Miinchen, 2nd edition.

[OMG, 2006] OMG (2006). Object Constraint Language, version 2.0. Technical Report
formal /06-05-01.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version 2.1.2. Technical
Report formal /07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version 2.1.2. Technical
Report formal /07-11-02.

[Rumbaugh et al., 1990] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W.
(1990). Object-Oriented Modeling and Design. Prentice Hall.

23/23

