— 02 — 2013-10-23 — main
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Last Lecture:
Motivation: model-based development of things (houses, software) to cope
with complexity, detect errors early

Model-based (or -driven) Software Engineering

UML Mode of the Lecture: Blueprint.

This Lecture:

Educational Objectives: Capabilities for these tasks/questions:

Why is UML of the form it is?
Shall one feel bad if not using all diagrams during software development?

What is a signature, an object, a system state, etc.?
What's the purpose of signature, object, etc. in the course?

How do Basic Object System Signatures relate to UML class diagrams?

Content:
Brief history of UML
Course map revisited
Basic Object System Signature, Structure, and System State

2/23



— 02 - 2013-10-23 — main

Why (of all things) UML?
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Why (of all things) UML?
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Note: being a modelling languages doesn’'t mean being graphical
(or: being a visual formalism [Harel]).
For instance, [Kastens and Biining, 2008] also name:
Sets, Relations, Functions
Terms and Algebras
Propositional and Predicate Logic
Graphs
XML Schema, Entity Relation Diagrams, UML Class Diagrams
Finite Automata, Petri Nets, UML State Machines

Pro: visual formalisms are found appealing and easier to grasp.
Yet they are not necessarily easier to write!

Beware: you may meet people who dislike visual formalisms just for
being graphical — maybe because it is easier to “trick” people with a
meaningless picture than with a meaningless formula.

More serious: it's maybe easier to misunderstand a picture than a formula.



A Brief History of UML

o Boxes/lines and finite automata are used to visualise software for ages.

» 1970’s, Software Crisis™

— ldea: learn from engineering disciplines to handle growing complexity.

Languages:

Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

« Mid 1980's: Statecharts [Harel, 1987], StateMate™ [Harel et al., 1990]

add(Object) : void

insert(int, Object) ; void
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A Brief History of UML
o Boxes/lines and finite automata are used to visualise software for ages.
» 1970’s, Software Crisis™
— ldea: learn from engineering disciplines to handle growing complexity.
Languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams
« Mid 1980's: Statecharts [Harel, 1987], StateMate™ [Harel et al., 1990]
» Early 1990’s, advent of Object-Oriented-Analysis/Design/Programming
— Inflation of notations and methods, most prominent:
¢ Object-Modeling Technique (OMT) [Rumbaugh et al., 1990]
A Generalization / Inheritance List
§  Class operation J Class attribute add(Objact) - void
italic  Abstract class / Abstract operation insert(int, Object) - void .
Association f Link N gelfint) - Object Stop)
I Multiplicity : optional getSze).: ind [Pause]
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2 @ Mulipioty:;meny ning Unpause] o wait SR
= Aggregation
wn
| [Continue]
;: next LinkedList ArrayList (:}: http://wikimedia.org (CC nc-sa 3.0, User:AutumnSnow)
g Entry size int=0 elements | Array ;U
o $MAX_SIZE  int = 100 ]
header add(Object) - void =
= next: Entry °
I o

O

insert(int, Object) : void

get(int) : Object
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A Brief History of UML
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Boxes/lines and finite automata are used to visualise software for ages.
1970’s, Software Crisis™
— ldea: learn from engineering disciplines to handle growing complexity.

Languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams
Mid 1980's: Statecharts [Harel, 1987], StateMate™ [Harel et al., 1990]
Early 1990’s, advent of Object-Oriented-Analysis/Design/Programming

— Inflation of notations and methods, most prominent:

¢ Object-Modeling Technique (OMT) [Rumbaugh et al., 1990]
e Booch Method and Notation [Booch, 1993]
o Object-Oriented Software Engineering (OOSE) [Jacobson et al., 1992]

Each “persuasion” selling books, tools, seminars. ..

Late 1990’s: joint effort UML 0.x, 1.x

Standards published by Object Management Group (OMG), “international,
open membership, not-for-profit computer industry consortium” .

Since 2005: UML 2.x 5/23



UML Overview [oma, 2007b, 684]
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OCI_ Diagram
[ 1
Structure Behavior
Diagram Diagram
! T ; [ [ ¥
. Component Object Activity Use Case State Machine
Class Diagram Diagram Diagram Diagram Diagram Diagram
Composite
Structure Deployment Package Interaction
Diagram Diagram Diagram Diagram
A
! [
Sequence Irgeracvtlon
Diagram verview
Diagram
Communication Timing
Diagram Diagram
Figure A.5 - The taxonomy of structure and behavior diagram
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Common Expectations on UML
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o Easily writeable, readable even by customers

o Powerful enough to bridge the gap between idea and implementation
o Means to tame complexity by separation of concerns (“views")

o Unambiguous

» Standardised, exchangeable between modelling tools

o UML standard says how to develop software

o Using UML leads to better software

We will see...

Seriously: After the course, you should have an own opinion on each of these claims.
In how far/in what sense does it hold? Why? Why not? How can it be achieved?
Which ones are really only hopes and expectations? ...7
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Map Revisited
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Diagram Diagram
Recall: B 5
.
e Overall aim: a for.mal language ctass ovagram ‘ componen ‘ ‘ P ‘ ‘ pevay ‘
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UML: Semantic Areas
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Activities State Machines Interactions
Actions
Inter-Object Behavior Base Intra-Object Behavior Base
Structural Foundations g
Figure 6.1 - A schematic of the UML semantic areas and their dependencies

[OMG, 2007b, 11]

Common Semantical Domain
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Basic Object System Sgnature
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a )
Definition. A (Basic) Object System Signature is a quadruple
= €. t
& = (€, V, air) T&Jm clwe [De
where e e o O_L\Q‘ZWA{
o T i t of (basic) types, .
is a set of (basic) types {W’E' o .
o % is a finite set of classes, 'Dm N @
o V is a finite set of typed attributes/i.e., each v € V has type
o TE T or (b D© D]
o C C,, where C € €
s e ey, i oo o
: ' T Aol N~ T 3D, D 1D}
i o atr: € —>EZ maps each class to its set of attributes.
AN AN Y,
total fomchian  pasenct of V/
7 Note: Inspired by OCL 2.0 standard [OMG, 2006], Annex A.
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Basic Object System Sgnature Example
& = (7,%,V, atr) where
o (basic) types .7 and classes €, (both finite),
e typed attributes V, 7 from 7 or Cy 1 or Cy, C € €,
o atr : € — 2¥ mapping classes to attributes.
. §  clasjes athiloutes 4 (c =3 ,Mf
R A L )5
V) has fype 6 V—r— ~—
So = ({Int}a {C,D},{$ : [ntap : CO,lvn : C*},{C = {pa ’I”L},D e {ZE}})
}szsfo
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Basic Object System Sgnature Another Example
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& = (7,%,V, atr) where
o (basic) types 7 and classes €, (both finite),
o typed attributes V', 7 from & or Cy; or Cy, C € €,

o atr : € — 2V mapping classes to attributes.

Example:

D5 s,

Basic Object System Structure
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- )

Definition. A Basic Object System Structure of
S =(7,%,V, atr)
is a domain functionﬂ@vwhich assigns to each type a domain, i.e.
o 7 € 7 is mapped to (1),

e C € € is mapped to an infinite set 2(C) of (object) identities.

Note: Object identities only have the “=" operation;
object identities of different classes are disjoint, i.e.
VYC,De¥:C#D— 2(C)Nn2(D)=.

o C, and Cy,; for C € € are mapped to 22(0),
We use Z(%) to denote | Jo ey Z(C); analogously 2(%.).

/

Note: We identify objects and object identities, because both uniquely deter-
mine each other (cf. OCL 2.0 standard).

(85,0500 L8, O v, fene

@95%53‘,

)
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Basic Object System Sructure Example
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Wanted: a structure for signature

0 = {Int},{C,D},{x: Int,p: Co1,n:C.},{C — {p,n},D — {z}})

Recall: by definition, seek a 2 which maps
o 7€ J to some 9(7),

e ¢ € € to some identities Z(C) (infinite, disjoint for different classes),

e C. and Cp; for C € € to 2(Coq1) = 2(C.) =229, aﬂ%@%‘,\a
honCe:
2(Int) =/ Q(Wf) o5-103,, 123
2(C) =Nt =5C] =16l D,(C 484,35,
=%2,%6, -
P(D) =N x [0 = s 20, %, %ﬁ% { f
c
%%ﬂ:%@)zzwmd 25)
D
D(Do1) =2(Dy) = 2&7(3} e

System Sate
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— 02—

all o%f(% JO(X/\JD\L{’\& Q)aﬁ(;of,(
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A system state of .#/wrt.

(\/\/\
a:9(€)» (V»(2(7)U2(%))).

1
« dom(c(u)) = atr(C) ﬁ
omm eg(r)ifv:r,TreT
. (a(uj(v) € 9(Dy) ifv:Dy;orv:D, withDe¥

We call u € 9(%) alive in o if and only if u € dom(o).

is a type-consistent mapping

7 parhol ahgw
Definition. Let 2 b¢ a structure of ¥ = (Z,%,V, atr).

We use %2 to denote the set of all system states of . wrt. 2.

VT tyes’ dowais
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System State Example
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Signature, Structure:
S0 = ({Int},{C,D},{z: Int,p: Co1,n: Ci},{C — {p,n}, D — {x}})
92(Int) =72, 29(C)={1¢,2c¢,3¢c,...}, 2(D)={1p,2p,3p,...}

Wanted: o : 2(%¢) - (V -» (2(TF) U 2(%.))) such that
o dom(o(u)) = atr(C),
o o(w)(v) € D(r)ifv:T,Te€T, o ou)(v) € 2(Cy) ifv: Dy withDe¥

@mzﬁz‘/w%% oz Ly fo reac gt
962:§4C«H§PW%40§)“H§§C'GCg§/ :—05/\6.()[ Ap has o
2, > xR ﬁj p—lik o (4(,)
(le + sl
[/\)(jo- EDL‘\
< Oé_GML 1 ’ﬁ‘[e«fS V{O
0={s i Tpr iR R g oégfeag S, Ce
g (:WZ{ \
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System State Example
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Signature, Structure:
o = ({Int},{C, D}, {x: Int,p: Cox,n: C.},{C — {p,n},D — {z}})
@(Int):Z, @(0)2{10720,30,...}7 @(D)={1D72D,3D,---}

Wanted: 0 : 2(%) » (V » (2(F) U 2(%.))) such that
o dom(o(u)) = atr(C),
o o(u)(v) € 2(r)ifv:7,7E€ T,
o o(u)(v) € 2(Cy) if v: Dy with D € € .

e Concrete, explicit:

UZ{E‘_\'—) {p—=0,n— {5c}},5¢ — {p—0,n+— 0}, 1p — {x — 23}}.

e Alternative: symbolic system state

o={c))— {p—0,n— {c2}},td— {p— 0,n— 0},d — {x — 23}}
assuming (c)féof € 2(C), d € (D), ¢1 # co.
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Course Map
CD, SM
= (Z,%.V, atr),

(consg,Sndg)
o) ———

You Are Here.

p € OCL

expr

uo

G:(N?E7f)

oD

<, 5D

P

= (Qsp,q0,As,—sp,Fsp)

(01,€1) -+ <> wr = ((04, consy, Snd;)); e
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