Software Design, Modelling and Analysis in UML

Lecture 02: Semantical Model

2013-10-23

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany
Contents & Goals

Last Lecture:

• Motivation: model-based development of things (houses, software) to cope
 with complexity, detect errors early
• Model-based (or -driven) Software Engineering
• UML Mode of the Lecture: Blueprint.

This Lecture:

• Educational Objectives: Capabilities for these tasks/questions:
 • Why is UML of the form it is?
 • Shall one feel bad if not using all diagrams during software development?
 • What is a signature, an object, a system state, etc.?
 What’s the purpose of signature, object, etc. in the course?
 • How do Basic Object System Signatures relate to UML class diagrams?

• Content:
 • Brief history of UML
 • Course map revisited
 • Basic Object System Signature, Structure, and System State
Why (of all things) UML?
Why (of all things) UML?

- Note: being a **modelling** languages doesn’t mean being graphical (or: being a visual formalism [Harel]).

- For instance, [Kastens and Bünning, 2008] also name:
 - Sets, Relations, Functions
 - Terms and Algebras
 - Propositional and Predicate Logic
 - Graphs
 - XML Schema, Entity Relation Diagrams, UML Class Diagrams
 - Finite Automata, Petri Nets, UML State Machines

- **Pro**: visual formalisms are found appealing and easier to **grasp**. Yet they are not necessarily easier to **write**!

- **Beware**: you may meet people who dislike visual formalisms just for being graphical — maybe because it is easier to “trick” people with a meaningless picture than with a meaningless formula.

More serious: it’s maybe easier to misunderstand a picture than a formula.
A Brief History of UML

- Boxes/lines and finite automata are used to visualise software for ages.

- **1970’s, Software Crisis**
 - Idea: learn from engineering disciplines to handle growing complexity.
 - Languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

- Mid **1980’s**: Statecharts [Harel, 1987], StateMate™ [Harel et al., 1990]
A Brief History of UML

- Boxes/lines and finite automata are used to visualise software for ages.

- **1970’s, Software Crisis**
 - Idea: learn from engineering disciplines to handle growing complexity.
 - Languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

- Mid **1980’s**: Statecharts [Harel, 1987], StateMate™ [Harel et al., 1990]

- Early **1990’s**, advent of **Object-Oriented** Analysis/Design/Programming
 - Inflation of notations and methods, most prominent:
 - **Object-Modeling Technique** (OMT) [Rumbaugh et al., 1990]
A Brief History of UML

- Boxes/lines and finite automata are used to visualise software for ages.

- 1970’s, Software Crisis - Idea: learn from engineering disciplines to handle growing complexity.
 - Languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

- Mid 1980’s:
 - Statecharts [Harel, 1987], StateMate [Harel et al., 1990]

- Early 1990’s, advent of Object-Oriented Analysis/Design/Programming
 - Inflation of notations and methods, most prominent:
 - Object-Modeling Technique (OMT) [Rumbaugh et al., 1990]
 - Booch Method and Notation [Booch, 1993]
A Brief History of UML

- Boxes/lines and finite automata are used to visualise software for ages.

- **1970's, Software Crisis™**
 — Idea: learn from engineering disciplines to handle growing complexity.
 Languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

- Mid 1980’s: Statecharts [Harel, 1987], StateMate™ [Harel et al., 1990]

- Early 1990’s, advent of **Object-Oriented**-Analysis/Design/Programming
 — Inflation of notations and methods, most prominent:
 - Object-Modeling Technique (OMT) [Rumbaugh et al., 1990]
 - Booch Method and Notation [Booch, 1993]
 - Object-Oriented Software Engineering (OOSE) [Jacobson et al., 1992]

 Each “persuasion” selling books, tools, seminars...

- Late 1990’s: joint effort **UML 0.x, 1.x**

 Standards published by **Object Management Group** (OMG), “international, open membership, not-for-profit computer industry consortium”.

- Since 2005: **UML 2.x**
Figure A.5 - The taxonomy of structure and behavior diagram
Common Expectations on UML

- Easily writeable, readable even by customers
- Powerful enough to bridge the gap between idea and implementation
- Means to tame complexity by separation of concerns ("views")
- Unambiguous
- Standardised, exchangeable between modelling tools
- UML standard says how to develop software
- Using UML leads to better software
- ...

We will see...

Seriously: After the course, you should have an own opinion on each of these claims. In how far/in what sense does it hold? Why? Why not? How can it be achieved? Which ones are really only hopes and expectations? ...?
Course Map Revisited
The Plan

Recall:
- **Overall aim**: a formal language for software blueprints.
- **Approach**:
 1. Common semantical domain.
 2. UML fragments as syntax.
 3. Abstract representation of diagrams.
 4. **Informal semantics**: UML standard.
 5. **assign meaning to diagrams**.
 6. Define, e.g., consistency.
UML: Semantic Areas

Figure 6.1 - A schematic of the UML semantic areas and their dependencies

[OMG, 2007b, 11]
Common Semantical Domain
Basic Object System Signature

Definition. A (Basic) Object System **Signature** is a quadruple

\[\mathcal{I} = (\mathcal{T}, \mathcal{C}, V, \text{atr}) \]

where

- \(\mathcal{T} \) is a set of (basic) types,
- \(\mathcal{C} \) is a finite set of classes,
- \(V \) is a finite set of typed attributes, i.e., each \(v \in V \) has type
 - \(\tau \in \mathcal{T} \) or
 - \(C_{0,1} \) or \(C_* \), where \(C \in \mathcal{C} \)
 (written \(v : \tau \) or \(v : C_{0,1} \) or \(v : C_* \)),
- \(\text{atr} : \mathcal{C} \to 2^V \) maps each class to its set of attributes.

Note: Inspired by OCL 2.0 standard [OMG, 2006], Annex A.
Basic Object System Signature Example

\[\mathcal{I} = (\mathcal{T}, \mathcal{C}, V, \text{atr}) \] where

- (basic) types \(\mathcal{T} \) and classes \(\mathcal{C} \), (both finite),
- typed attributes \(V, \tau \) from \(\mathcal{T} \) or \(C_{0,1} \) or \(C_* \), \(C \in \mathcal{C} \),
- \(\text{atr} : \mathcal{C} \to 2^V \) mapping classes to attributes.

Example:

\[\mathcal{I}_0 = (\{\text{Int}\}, \{C, D\}, \{x : \text{Int}, p : C_{0,1}, n : C_*\}, \{C \mapsto \{p, n\}, D \mapsto \{x\}\}) \]
Basic Object System Signature Another Example

\[\mathcal{I} = (\mathcal{T}, \mathcal{C}, V, \text{atr}) \text{ where} \]

- (basic) types \(\mathcal{T} \) and classes \(\mathcal{C} \), (both finite),
- typed attributes \(V, \tau \) from \(\mathcal{T} \) or \(C_{0,1} \) or \(C_* \), \(C \in \mathcal{C} \),
- \(\text{atr} : \mathcal{C} \rightarrow 2^V \) mapping classes to attributes.

Example:

\[\mathcal{I}_n = (\{E, F, G\}, \{y: B, p: C_*, q: E_{0,1}\}, \{E \rightarrow \emptyset, F \rightarrow \{p\}, G \rightarrow \{q, y\}, C_* \rightarrow \{p, y\}\}) \]
Definition. A Basic Object System Structure of
\[\mathcal{S} = (\mathcal{T}, \mathcal{C}, V, \text{atr}) \]
is a domain function \(\mathcal{D} \) which assigns to each type a domain, i.e.
- \(\tau \in \mathcal{T} \) is mapped to \(\mathcal{D}(\tau) \),
- \(C \in \mathcal{C} \) is mapped to an infinite set \(\mathcal{D}(C) \) of (object) identities.

Note: Object identities only have the “=” operation; object identities of different classes are disjoint, i.e.
\[\forall C, D \in \mathcal{C} : C \neq D \rightarrow \mathcal{D}(C) \cap \mathcal{D}(D) = \emptyset. \]

- \(C_* \) and \(C_{0,1} \) for \(C \in \mathcal{C} \) are mapped to \(2^{\mathcal{D}(C)} \).

We use \(\mathcal{D}(\mathcal{C}) \) to denote \(\bigcup_{C \in \mathcal{C}} \mathcal{D}(C) \); analogously \(\mathcal{D}(\mathcal{C}_*) \).

Note: We identify objects and object identities, because both uniquely determine each other (cf. OCL 2.0 standard).
Basic Object System Structure Example

Wanted: a structure for signature

\[\mathcal{S}_0 = (\{\text{Int}\}, \{C, D\}, \{x : \text{Int}, p : C_{0,1}, n : C_*\}, \{C \mapsto \{p, n\}, D \mapsto \{x\}\}) \]

Recall: by definition, seek a \(\mathcal{D} \) which maps

- \(\tau \in \mathcal{T} \) to some \(\mathcal{D}(\tau) \),
- \(c \in \mathcal{C} \) to some identities \(\mathcal{D}(C) \) (infinite, disjoint for different classes),
- \(C_* \) and \(C_{0,1} \) for \(C \in \mathcal{C} \) to \(\mathcal{D}(C_{0,1}) = \mathcal{D}(C_*) = 2^{\mathcal{D}(C)} \).

\[
\begin{align*}
\mathcal{D}(\text{Int}) &= \mathbb{Z}^+ \\
\mathcal{D}(C) &= \mathbb{N}^+ \times \{C\} = \{1_C, 2_C, 3_C, \ldots\} \\
\mathcal{D}(D) &= \mathbb{N}^+ \times \{D\} = \{1_D, 2_D, 3_D, \ldots\} \\
\mathcal{D}(C_{0,1}) = \mathcal{D}(C_*) &= 2^{\mathcal{D}(C)} \\
\mathcal{D}(D_{0,1}) = \mathcal{D}(D_*) &= 2^{\mathcal{D}(D)}
\end{align*}
\]
Definition. Let \mathcal{D} be a structure of $\mathcal{I} = (\mathcal{T}, \mathcal{C}, V, \text{atr})$. A system state of \mathcal{I} wrt. \mathcal{D} is a type-consistent mapping

$$\sigma : \mathcal{D}(\mathcal{C}) \rightarrow (V \leftrightarrow (\mathcal{D}(\mathcal{T}) \cup \mathcal{D}(\mathcal{C}_*)))$$

That is, for each $u \in \mathcal{D}(\mathcal{C})$, $C \in \mathcal{C}$, if $u \in \text{dom}(\sigma)$

- $\text{dom}(\sigma(u)) = \text{atr}(C)$
- $\sigma(u)(v) \in \mathcal{D}(\tau)$ if $v : \tau, \tau \in \mathcal{T}$
- $\sigma(u)(v) \in \mathcal{D}(D_*)$ if $v : D_{0,1}$ or $v : D_*$ with $D \in \mathcal{C}$

We call $u \in \mathcal{D}(\mathcal{C})$ alive in σ if and only if $u \in \text{dom}(\sigma)$.

We use $\Sigma^{\mathcal{D}}$ to denote the set of all system states of \mathcal{I} wrt. \mathcal{D}.
System State Example

Signature, Structure:

\[\mathcal{I}_0 = (\{\text{Int}\}, \{C, D\}, \{x : \text{Int}, p : C_{0,1}, n : C_*\}, \{C \mapsto \{p, n\}, D \mapsto \{x\}\}) \]

\[\mathcal{D}(\text{Int}) = \mathbb{Z}, \quad \mathcal{D}(C) = \{1_C, 2_C, 3_C, \ldots\}, \quad \mathcal{D}(D) = \{1_D, 2_D, 3_D, \ldots\} \]

Wanted: \(\sigma : \mathcal{D}(C) \rightsquigarrow (V \mapsto (\mathcal{D}(\mathcal{T}) \cup \mathcal{D}(C_*))) \) such that

- \(\text{dom}(\sigma(u)) = \text{atr}(C) \),
- \(\sigma(u)(v) \in \mathcal{D}(\tau) \) if \(v : \tau, \tau \in \mathcal{T} \),
- \(\sigma(u)(v) \in \mathcal{D}(C_*) \) if \(v : D_* \) with \(D \in C \).

\[\begin{align*}
\sigma_1 &= \emptyset \quad \text{\textit{empty function}} \\
\sigma_2 &= \left\{ 1_p \mapsto \{p \mapsto \{1_d\}, n \mapsto \{5_c, 6_c\}\}, \\
&\quad 2+D \mapsto \{x \mapsto 3\} \right\} \\
\text{Wrt. } D_2: \\
\sigma_3 &= \left\{ 5 \mapsto \{ \{p \mapsto \{17\}, n \mapsto \emptyset\} \right\}
\end{align*} \]

One way to read out:

- Object 1c has a p-link to 1c (i.e. to itself)
- Object 2c refers to objects 5c, 6c via link n
System State Example

Signature, Structure:

$$\mathcal{S}_0 = (\{\text{Int}\}, \{C, D\}, \{x : \text{Int}, p : C_{0,1}, n : C_*\}, \{C \mapsto \{p, n\}, D \mapsto \{x\}\})$$

$$\mathcal{D}(\text{Int}) = \mathbb{Z}, \quad \mathcal{D}(C) = \{1_C, 2_C, 3_C, \ldots\}, \quad \mathcal{D}(D) = \{1_D, 2_D, 3_D, \ldots\}$$

Wanted: $\sigma : \mathcal{D}(C) \ni (V \ni (\mathcal{D}(\mathcal{T}) \cup \mathcal{D}(C_*)))$ such that

- $\text{dom}(\sigma(u)) = \text{atr}(C)$,
- $\sigma(u)(v) \in \mathcal{D}(\tau)$ if $v : \tau, \tau \in \mathcal{T}$,
- $\sigma(u)(v) \in \mathcal{D}(C_*)$ if $v : D_*$ with $D \in \mathcal{C}$.

• Concrete, explicit:

$$\sigma = \{1_C \mapsto \{p \mapsto \emptyset, n \mapsto \{5_C\}\}, 5_C \mapsto \{p \mapsto \emptyset, n \mapsto \emptyset\}, 1_D \mapsto \{x \mapsto 23\}\}.$$

• Alternative: symbolic system state

$$\sigma = \{c_1 \mapsto \{p \mapsto \emptyset, n \mapsto \{c_2\}\}, c_2 \mapsto \{p \mapsto \emptyset, n \mapsto \emptyset\}, d \mapsto \{x \mapsto 23\}\}$$

assuming $c_1, c_2 \in \mathcal{D}(C), d \in \mathcal{D}(D), c_1 \neq c_2$.
You Are Here.
\[M = (\Sigma_{\mathcal{I}}, A_{\mathcal{I}}, \rightarrow_{SM}) \]

\[\varphi \in OCL \]

\[\mathcal{I} = (\mathcal{I}, \mathcal{C}, V, atr), SM \]

\[\pi = (\sigma_0, \varepsilon_0) \xrightarrow{(cons_0, Snd_0)} (\sigma_1, \varepsilon_1) \cdots \]

\[\omega_\pi = ((\sigma_i, cons_i, Snd_i))_{i \in \mathbb{N}} \]

\[G = (N, E, f) \]

\[B = (Q_{SD}, q_0, A_{\mathcal{I}}, \rightarrow_{SD}, F_{SD}) \]
References
References

