If then new aspects are irrelevant (for a given context), we write
\(\langle\cdot\rangle\in C,S\{\langle\cdot\rangle\rangle\)

\(\tau\in\mathcal{C}\) or \(\tau\in\mathcal{A}\), if details are irrelevant.

\(\{\langle\cdot\rangle\rangle\rangle\)

\(\mathcal{C}\) or \(\mathcal{A}\), if details are irrelevant.

\(\mathcal{C}\) or \(\mathcal{A}\), if details are irrelevant.

\(\tau\in\mathcal{C}\) or \(\tau\in\mathcal{A}\), if details are irrelevant.

\(\{\langle\cdot\rangle\rangle\rangle\)

\(\mathcal{C}\) or \(\mathcal{A}\), if details are irrelevant.

\(\{\langle\cdot\rangle\rangle\rangle\rangle\)

\(\mathcal{C}\) or \(\mathcal{A}\), if details are irrelevant.

\(\{\langle\cdot\rangle\rangle\rangle\rangle\rangle\)

\(\mathcal{C}\) or \(\mathcal{A}\), if details are irrelevant.

\(\{\langle\cdot\rangle\rangle\rangle\rangle\rangle\rangle\)

\(\mathcal{C}\) or \(\mathcal{A}\), if details are irrelevant.
(ii) Well-typedness in a type environment \(\tau \):
\[
\text{If } \tau \vdash n : \tau \text{ then } \tau \text{ which are of type } \tau \text{ to express operations is the application of } expr \cdot \bullet
\]

(i) Universal well-typedness:
\[
\text{if } \tau \vdash \text{true} : \tau \text{ then } \tau \text{ boolean constant is of type } \tau \text{ logical variable if and only if we can derive } expr \rightarrow \bullet)
\]

Excursus: Type Theory (cf. Thiemann, 2008)
function \(I \in \mathbb{C}_2 \to \mathbb{C}_3 \), \(I \) and \((I) = \mathit{false} \) and \(1\mathbb{C}_2\mathbb{0} \), \(\mathbb{I} \in \{x, \mathit{false}\} \), \(\mathit{false} \times \mathbb{I} \rightarrow \mathbb{Int} \), \(\mathit{true} \times \mathbb{I} \rightarrow \mathbb{Int} \). Thus, \(\mathit{false} \) and \(\mathit{true} \)

\(\mathbb{I} \) to \(\mathit{false} \) without breaking well-typedness.

In other words, \(\mathbb{I} \) to have \(\mathit{false} \) and \(\mathit{true} \)

\(\mathbb{I} \) to \(\mathit{false} \) and \(\mathit{true} \)

Thus, \(\mathbb{I} \) to \(\mathit{false} \) and \(\mathit{true} \)

So, why isn't there an interpretation for

Example

Casting in the Type System

First Recapitulation

Iterate Example

False Example.
Visibility—The Intuition

Example
Attribute Access in Context Example

\[A \vdash \text{expr} : \tau \]
\[(\text{Attr 1}) \quad A \vdash \text{expr} : \tau \]
\[A \vdash \text{v} (\text{expr 1}) : \tau, \langle \text{v} : \tau, \xi, \text{expr 0}, P / \text{BV} \rangle \in \text{atr} (C) \]
\[\xi = +, \text{or} \xi = - \]
\[C = B - v : \text{Int} \]

Example:

\[\text{self} : \tau \quad A \vdash \text{self}.r.v > 0 \]

The Semantics of Visibility

• Observation:
 • Whether an expression does or does not respect visibility is a matter of well-typedness only.
 • We only evaluate (\(= \) apply \(I \) to) well-typed expressions.
 → We need not adjust the interpretation function \(I \) to support visibility.

What is Visibility Good For?

• Visibility is a property of attributes—
 • Is it useful to consider it in OCL?
 • In other words: given the picture above, is it useful to state the following invariant (even though \(x \) is private in \(D \))
 \[\text{context } C \quad \text{inv} : n.x > 0? \]
 • It depends.
 • Constraints and pre/postconditions:
 • Visibility is sometimes not taken into account. To state "global" requirements, it might be adequate to have a "global view", be able to look into all objects.
 • But: visibility supports "narrow interfaces", "information hiding", and similar good design practices. To be more robust against changes, try to state requirements only in the terms which are visible to a class.
 • Rule-of-thumb: if attributes are important to state requirements on design models, leave them public or provide get-methods (later).
 • Guards and operation bodies:
 • If in doubt, yes (\(= \) take visibility into account).
 • Any so-called action language typically takes visibility into account.

Recapitulation

Class Diagrams

• We extended the typesystem for:
 • casts (requires change of \(I \)) and
 • visibility (no change of \(I \)).
• Later: navigability of associations.

Good:
• Well-typedness is decidable for these typesystems. That is, we can have automatic tools that check, whether OCL expressions in a model are well-typed.

References
References

