Contents & Goals

Last Lecture:
- System configuration
- Transformer
- Action language: skip, update, send

This Lecture:
- **Educational Objectives:** Capabilities for following tasks/questions.
 - What does this State Machine mean? What happens if I inject this event?
 - Can you please model the following behaviour.
 - What is: Signal, Event, Ether, Transformer, Step, RTC.

- **Content:**
 - Transformers for Action Language
 - Run-to-completion Step
 - Putting It All Together
Transformer Cont’d
Transformer: Create

<table>
<thead>
<tr>
<th>Abstract Syntax</th>
<th>Concrete Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>create(C, expr, v)</code></td>
<td><code>exp1.v := new C</code></td>
</tr>
</tbody>
</table>

Intuitive Semantics

Create an object of class \(C\) and assign it to attribute \(v\) of the object denoted by expression \(expr\).

Well-Typedness

\[
expr : \tau_D, \ v \in atr(D), \ atr(C) = \{(v_1^i : \tau_1^i, expr_0^i) | 1 \leq i \leq n\}
\]

Semantics

...

Observables

...

(Error) Conditions

\(I[expr](\sigma, \beta)\) not defined.

- We use an "and assign"-action for simplicity — it doesn’t add or remove expressive power, but moving creation to the expression language raises all kinds of other problems such as order of evaluation (and thus creation).
- Also for simplicity: no parameters to construction (~ parameters of constructor). Adding them is straightforward (but somewhat tedious).

\((\star)\) SO NOT: \(x := (new\ C).x + (new\ C).y\)

\(\text{if needed}\)

\[
\begin{align*}
\text{tup}_1 := \text{new} C; \\
\text{tup}_2 := \text{new} C; \\
x := +\text{tup}_1 x \\
+\text{tup}_2 y \\
\text{tup}_3 := \text{new} C; \\
\text{tup}_4 := \text{new} C;
\end{align*}
\]
Create Transformer Example

SM_C:

\[s_1 \xrightarrow{\ldots; n := \text{new } C; \ldots} s_2 \]

\[
\begin{align*}
\text{create}(C, expr, v) \\
t_{\text{create}(C, expr, v)}(\sigma, \epsilon) &= \ldots
\end{align*}
\]

σ:

\[
\begin{array}{c|c}
\text{d} & D \\
\hline
n = \emptyset
\end{array}
\]

ϵ:

\[
\begin{array}{c}
\\text{(non-det. choice)} \\
\text{by initial value expression}
\end{array}
\]

$\mathcal{D}(\epsilon)$

\[
\begin{array}{c}
\text{dom } \sigma \\
\text{(non-det. choice)}
\end{array}
\]

$\mathcal{D}(\text{init})$

\[
\begin{array}{c}
\text{(non-det. choice)} \\
\text{: } \sigma'
\end{array}
\]

$\mathcal{D}(\text{init})$

\[
\begin{array}{c}
\text{(non-det. choice)} \\
\text{: } \epsilon'
\end{array}
\]
How To Choose New Identities?

- **Re-use**: choose any identity that is not alive now, i.e. not in \(\text{dom}(\sigma) \).
 - Doesn’t depend on history.
 - May “undangle” dangling references – may happen on some platforms.

- **Fresh**: choose any identity that has not been alive ever, i.e. not in \(\text{dom}(\sigma) \) and any predecessor in current run.
 - Depends on history.
 - Dangling references remain dangling – could mask “dirty” effects of platform.
Transformer: Create

<table>
<thead>
<tr>
<th>abstract syntax</th>
<th>concrete syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>create($C, expr, v$)</td>
<td></td>
</tr>
</tbody>
</table>

intuitive semantics
Create an object of class C and assign it to attribute v of the object denoted by expression $expr$.

well-typedness

$$expr : \tau_D, v \in atr(D), atr(C) = \{\langle v_1 : \tau_1, expr_0^i \rangle \mid 1 \leq i \leq n\}$$

semantics

\[((\sigma, \varepsilon), (\sigma', \varepsilon')) \in t \text{ iff } \sigma' = \sigma[u_0 \mapsto \sigma(u_0)[v \mapsto \hat{u}]] \cup \{u \mapsto \{v_i \mapsto d_i \mid 1 \leq i \leq n\} \}, \]

\[\varepsilon' = [u](\varepsilon) \text{; } u \in D(C) \text{ fresh, i.e. } u \notin \text{dom}(\sigma); \]

\[u_0 = I[expr](\sigma, \varnothing); d_i = I[expr_0^i](\sigma, \varnothing) \text{ if } expr_0^i \neq \varnothing \text{ and arbitrary value from } D(\tau_i) \text{ otherwise}; \]

observables

\[\text{Obs}_{create}[u_x] = \{(u_x, \bot, (\ast, \emptyset), u)\} \]

(error) conditions

\[I[expr](\sigma) \text{ not defined.} \]
Transformer: Destroy

<table>
<thead>
<tr>
<th>Abstract Syntax</th>
<th>Concrete Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>destroy(expr)</code></td>
<td><code>delete expr</code></td>
</tr>
</tbody>
</table>

Intuitive Semantics

Destroy the object denoted by expression $expr$.

Well-Typedness

$expr : \tau_C, C \in \mathcal{C}$

Semantics

\[\ldots \]

Observables

\[Obs_{destroy}[u_x] = \{ (u_x, \perp, (+, \emptyset), u) \} \]

(Error) Conditions

\[I[expr](\sigma, \beta) \text{ not defined.} \]
Destroy Transformer Example

S_{MC}:

\[s_1 \rightarrow / \ldots; \text{delete } n; \ldots \rightarrow s_2 \]

\[\text{destroy}(expr) \]

\[t_{\text{destroy}(expr)[u_x]}(\sigma, \varepsilon) = \ldots \]

σ:

\[
\begin{array}{c}
c : C \\
\end{array} \quad n \quad \begin{array}{c}
u : C \\
\end{array}
\]

\[\text{destroy } n \]

\[u_x = c \]

\[\frac{c : C}{n = \{u\}} \]

ε:

\[\varepsilon' \]

\[\text{V is gone} \]
What to Do With the Remaining Objects?

Assume object u_0 is destroyed...

- object u_1 may still refer to it via association r:
 - allow dangling references?
 - or remove u_0 from $\sigma(u_1)(r)$?

- object u_0 may have been the last one linking to object u_2:
 - leave u_2 alone?
 - or remove u_2 also? (*garbage collection*)

- Plus: (temporal extensions of) OCL may have dangling references.

Our choice: Dangling references and no garbage collection!
This is in line with “expect the worst”, because there are target platforms which don't provide garbage collection — and models shall (in general) be correct without assumptions on target platform.

But: the more “dirty” effects we see in the model, the more expensive it often is to analyse. Valid proposal for simple analysis: monotone frame semantics, no destruction at all.
Transformer: Destroy

<table>
<thead>
<tr>
<th>abstract syntax</th>
<th>concrete syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>destroy(expr)</code></td>
<td></td>
</tr>
</tbody>
</table>

Intuitive Semantics

Destroy the object denoted by expression \(expr \).

Well-Typedness

\(expr : \tau_C, C \in \mathcal{C} \)

Semantics

\[
\begin{align*}
 t[u_x](\sigma, \varepsilon) &= (\sigma', \varepsilon) \\
 \text{where } \sigma' &= \sigma|_{\text{dom}(\sigma) \setminus \{u\}} \text{ with } u = I[expr](\sigma, \underline{u}).
\end{align*}
\]

Observables

\[
\text{Obs}_{\text{destroy}}[u_x] = \{(u_x, \perp, (+, \emptyset), u)\}
\]

(Error) Conditions

\(I[expr](\sigma, \underline{u}) \) not defined.
Sequential Composition of Transformers

- **Sequential composition** $t_1 \circ t_2$ of transformers t_1 and t_2 is canonically defined as

\[
(t_2 \circ t_1)[u_x](\sigma, \varepsilon) = t_2[u_x](t_1[u_x](\sigma, \varepsilon))
\]

with observation

\[
Obs_{(t_2 \circ t_1)}[u_x](\sigma, \varepsilon) = Obs_{t_1}[u_x](\sigma, \varepsilon) \cup Obs_{t_2}[u_x](t_1(\sigma, \varepsilon)).
\]

- **Clear**: not defined if one the two intermediate “micro steps” is not defined.
Observation: our transformers are in principle the *denotational semantics* of the actions/action sequences. The trivial case, to be precise.

Note: with the previous examples, we can capture
- empty statements, skips,
- assignments,
- conditionals (by normalisation and auxiliary variables),
- create/destroy,

but not *possibly diverging loops*.

Our (Simple) Approach: if the action language is, e.g. Java, then *(syntactically)* forbid loops and calls of recursive functions.

Other Approach: use full blown denotational semantics.

No show-stopper, because loops in the action annotation can be converted into transition cycles in the state machine.
Step and Run-to-completion Step
Definition. Let A be a set of actions and S a (not necessarily finite) set of states. We call

$$
\rightarrow \subseteq S \times A \times S
$$

a (labelled) transition relation.

Let $S_0 \subseteq S$ be a set of initial states. A sequence

$$
s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \ldots
$$

with $s_i \in S$, $a_i \in A$ is called computation of the labelled transition system (S, \rightarrow, S_0) if and only if

- **initiation:** $s_0 \in S_0$
- **consecution:** $(s_i, a_i, s_{i+1}) \in \rightarrow$ for $i \in \mathbb{N}_0$.

Note: for simplicity, we only consider infinite runs.
Active vs. Passive Classes/Objects

- **Note**: From now on, assume that all classes are **active** for simplicity.

 We’ll later briefly discuss the Rhapsody framework which proposes a way how to integrate non-active objects.

- **Note**: The following RTC “algorithm” follows [Harel and Gery, 1997] (i.e. the one realised by the Rhapsody code generation) where the standard is ambiguous or leaves choices.
From Core State Machines to LTS

Definition. Let $\mathcal{I}_0 = (\mathcal{I}_0, \mathcal{C}_0, V_0, atr_0, \mathcal{E})$ be a signature with signals (all classes active), \mathcal{D}_0 a structure of \mathcal{I}_0, and $(Eth, ready, \oplus, \ominus, [\cdot])$ an ether over \mathcal{I}_0 and \mathcal{D}_0. Assume there is one core state machine M_C per class $C \in \mathcal{C}$.

We say, the state machines induce the following labelled transition relation on states $S := (\Sigma \mathcal{D} \cup \{\#\} \times Eth)$ with actions $A := \left(2^{\mathcal{D}(\mathcal{E}) \times (\mathcal{D}(\mathcal{E}) \cup \{\bot\})} \times Evs(\mathcal{E}, \mathcal{D}) \times \mathcal{D}(\mathcal{E}) \right)^2$:

- $(\sigma, \varepsilon) \xrightarrow{(cons, \text{Snd})} (\sigma', \varepsilon')$ if and only if
 - (i) an event with destination u is discarded,
 - (ii) an event is dispatched to u, i.e. stable object processes an event, or
 - (iii) run-to-completion processing by u commences, i.e. object u is not stable and continues to process an event,
 - (iv) the environment interacts with object u,

- $s \xrightarrow{(cons, \emptyset)} \#$ if and only if
 - (v) $s = \#$ and $cons = \emptyset$, or an error condition occurs during consumption of $cons$.
(i) Discarding An Event

\[(\sigma, \varepsilon) \xrightarrow{cons,Snd} (\sigma', \varepsilon') \]

if

- an \(E \)-event (instance of signal \(E \)) is ready in \(\varepsilon \) for object \(u \) of a class \(C \), i.e. if

\[u \in \text{dom}(\sigma) \cap \mathcal{D}(C) \land \exists u_E \in \mathcal{D}(C) : u_E \in \text{ready}(\varepsilon, u) \]

- \(u \) is stable and in state machine state \(s \), i.e. \(\sigma(u)(\text{stable}) = 1 \) and \(\sigma(u)(\text{st}) = s \),

- but there is no corresponding transition enabled (all transitions incident with current state of \(u \) either have other triggers or the guard is not satisfied)

\[\forall (s, F, \text{expr}, \text{act}, s') \in \xrightarrow{} (SM_C) : F \neq E \lor I[\text{expr}](\sigma, u) = 0 \]

and

- the system configuration doesn’t change, i.e. \(\sigma' = \sigma \)

- the event \(u_E \) is removed from the ether, i.e.

\[\varepsilon' = \varepsilon \oplus u_E, \]

- consumption of \(u_E \) is observed, i.e.

\[cons = \{(u, (E, \sigma(u_E)))\}, \text{Snd} = \emptyset. \]
Example: Discard

SM_C:

\[
\begin{align*}
[s_1] & \xrightarrow{G[x > 0]/x := y} [s_2] \\
H/z := y/x
\end{align*}
\]

\[
[x > 0]/x := x - 1; n! J
\]

$\langle \langle \text{signal} \rangle \rangle$

$\langle \langle \text{env} \rangle \rangle$

\[
\begin{align*}
C & : x, z : \text{Int} \\
y : \text{Int} \\
\langle \langle \text{env} \rangle \rangle
\end{align*}
\]

\[
\begin{align*}
\sigma: & \quad c : C \\
x = 1, z = 0, y = 2 \\
st = s_1 \\
stable = 1 \\
\varepsilon: & \quad J \text{ for } c, \\
\text{ready (id } u_d) \\
\end{align*}
\]

ε' is consumed, nothing sent

\[
(\{s_3, \emptyset\})
\]

\[
\sigma' = \sigma
\]

$\varepsilon' = \varepsilon \oplus u_E$

ready G for C

\[
\begin{align*}
\exists u \in \text{dom}(\sigma) \cap \mathcal{D}(C) \\
\exists u_E \in \mathcal{D}(\varepsilon) : u_E \in \text{ready}(\varepsilon, u) \\
\forall (s, F, expr, act, s') \in (SM_C): \\
F \neq E \lor I[expr](\sigma) = 0 \\
\sigma(u)(\text{stable}) = 1, \sigma(u)(st) = s, \\
\sigma' = \sigma, \varepsilon' = \varepsilon \oplus u_E \\
\text{cons} = \{(u, (E, \sigma(u_E)))\}, \text{Snd} = \emptyset
\end{align*}
\]
\((ii)\) Dispatch

\[\sigma, \varepsilon \xrightarrow{(\text{cons}, \text{Snd}) \quad u} (\sigma', \varepsilon') \quad \text{if} \]

- \(u \in \text{dom}(\sigma) \cap \mathcal{D}(C) \land \exists u_E \in \mathcal{D}(E) : u_E \in \text{ready}(\varepsilon, u)\)
- \(u\) is stable and in state machine state \(s\), i.e. \(\sigma(u)(\text{stable}) = 1\) and \(\sigma(u)(\text{st}) = s\),
- a transition is enabled, i.e.

\[\exists (s, F, expr, act, s') \in (\mathcal{S} \mathcal{M}_C) : F = E \land I[expr](\tilde{\sigma}_u) = 1 \]

where \(\tilde{\sigma} = \sigma[u.\text{params}_E \mapsto u_E]\).

and

- \((\sigma', \varepsilon')\) results from applying \(t_{\text{act}}\) to \((\sigma, \varepsilon)\) and removing \(u_E\) from the ether, i.e.

\[(\sigma'', \varepsilon') \in t_{\text{act}}(\tilde{\sigma}, \varepsilon \ominus u_E), \]

\[\sigma' = (\sigma''[u.\text{st} \mapsto s', u.\text{stable} \mapsto b, u.\text{params}_E \mapsto \emptyset])|_{\mathcal{D}(E)\setminus\{u_E\}} \]

where \(b\) depends:

- If \(u\) becomes stable in \(s'\), then \(b = 1\). It \textit{does} become stable if and only if there is no transition \textit{without trigger} enabled for \(u\) in \((\sigma', \varepsilon')\).
- Otherwise \(b = 0\).

- Consumption of \(u_E\) and the side effects of the action are observed, i.e.

\[\text{cons} = \{(u, (E, \sigma(u_E)))\}, \quad \text{Snd} = \text{Obst}_{\text{act}}(\tilde{\sigma}, \varepsilon \ominus u_E) . \]
Example: Dispatch

\[
\begin{align*}
\forall s : \text{C} : \{s_1\} & \implies G[x > 0]/x := y \\
& \implies s_2 \\
H/z := y/x
\end{align*}
\]

\[[x > 0]/x := x - 1; n ! J \]

\[
\begin{align*}
\sigma & : \{c : \text{C} \mid x = 1, z = 0, y = 2, \text{st} = s_1, \text{stable} = 1 \}
\end{align*}
\]

\[
\begin{align*}
\varepsilon & : \text{G for c}
\end{align*}
\]

\[
\begin{align*}
\exists u \in \text{dom}(\sigma) \cap \mathcal{D}(C) \\
& \exists u_E \in \mathcal{D}(\varepsilon') : u_E \in \text{ready}(\varepsilon, u)
\end{align*}
\]

\[
\begin{align*}
\exists (s, F, \text{expr}, \text{act}, s') \in \rightarrow (SM_C) : \\
F & = E \land I[\text{expr}](\tilde{\sigma}) = 1
\end{align*}
\]

\[
\tilde{\sigma} = \sigma[u.\text{params}_E \mapsto u_E].
\]

\[
\begin{align*}
\sigma(u)(\text{stable}) & = 1, \sigma(u)(\text{st}) = s,
\end{align*}
\]

\[
\begin{align*}
(\sigma'', \varepsilon') & = t_{\text{act}}(\tilde{\sigma}, \varepsilon \ominus u_E)
\end{align*}
\]

\[
\begin{align*}
\sigma' & = (\sigma''[u.\text{st} \mapsto s', u.\text{stable} \mapsto b, u.\text{params}_E \mapsto \emptyset])|_{\mathcal{D}(\varepsilon') \setminus \{u_E\}}
\end{align*}
\]

\[
\begin{align*}
\text{cons} & = \{(u, (E, \sigma(u_E)))\}, \text{Snd} = \text{Obs}_{t_{\text{act}}}(\tilde{\sigma}, \varepsilon \ominus u_E)
\end{align*}
\]
(iii) Commence Run-to-Completion

\[(\sigma, \varepsilon) \xrightarrow{(\text{cons}, \text{Snd})} u (\sigma', \varepsilon')\]

if

- there is an unstable object \(u \) of a class \(C \), i.e.
 \[u \in \text{dom}(\sigma) \cap \mathcal{D}(C) \wedge \sigma(u)(\text{stable}) = 0 \]

- there is a transition without trigger enabled from the current state \(s = \sigma(u)(\text{st}) \), i.e.
 \[\exists (s, _, \text{expr}, \text{act}, s') \in \rightarrow (SM_C) : I[\text{expr}](\sigma, \varepsilon) = 1 \]

and

- \((\sigma', \varepsilon')\) results from applying \(t_{\text{act}} \) to \((\sigma, \varepsilon)\), i.e.
 \[(\sigma'', \varepsilon') \in t_{\text{act}}[u](\sigma, \varepsilon), \quad \sigma' = \sigma''[u.\text{st} \mapsto s', u.\text{stable} \mapsto b] \]

where \(b \) depends as before.

- Only the side effects of the action are observed, i.e.
 \[\text{cons} = \emptyset, \text{Snd} = \text{Obs}_{t_{\text{act}}}(\sigma, \varepsilon). \]
Example: Commence

\[[x > 0]/x := x - 1; n! J \]

\[G[x > 0]/x := y \]

\[H/z := y/x \]

\[\langle \langle \text{signal}, \text{env} \rangle \rangle \]

\[\langle \langle \text{signal} \rangle \rangle \]

\[G, J \]

\[C \]

\[x, z : \text{Int} \]

\[y : \text{Int} \]

\[\langle \langle \text{env} \rangle \rangle \]

\[\sigma : \]

\[c : C \]

\[x = 2, z = 0, y = 2 \]

\[st = s_2 \]

\[\text{stable} = 0 \]

\[\varepsilon : \]

\[c : C' \]

\[\sigma' : \]

\[c : C \]

\[x = 1, z = 0, y = 2 \]

\[st = s_2 \]

\[\text{stable} = 0 \]

\[\varepsilon : \]

\[t_{act} (\sigma, \varepsilon), \]

\[(\sigma'', \varepsilon') = t_{act} (\sigma, \varepsilon), \]

\[\sigma' = \sigma''[u.st \mapsto s', u.\text{stable} \mapsto b] \]

\[\text{cons} = \emptyset, \text{Snd} = \text{Obs}_{t_{act}} (\sigma, \varepsilon) \]

\[\exists u \in \text{dom}(\sigma) \cap \mathcal{D}(C) : \sigma(u)(\text{stable}) = 0 \]

\[\exists (s, \eta, \text{expr}, \text{act}, s') \in (SM_C) : I[\text{expr}](\sigma) = 1 \]

\[\sigma(u)(\text{stable}) = 1, \sigma(u)(st) = s, \]

\[(\sigma'', \varepsilon') = t_{act} (\sigma, \varepsilon), \]

\[\sigma' = \sigma''[u.st \mapsto s', u.\text{stable} \mapsto b] \]

\[\text{cons} = \emptyset, \text{Snd} = \text{Obs}_{t_{act}} (\sigma, \varepsilon) \]
Assume that a set $\mathcal{E}_{env} \subseteq \mathcal{E}$ is designated as **environment events** and a set of attributes $v_{env} \subseteq V$ is designated as **input attributes**.

Then

$$\begin{align*}
(\sigma, \varepsilon) \xrightarrow{(cons, Snd)_{env}} (\sigma', \varepsilon')
\end{align*}$$

if

- an environment event $E \in \mathcal{E}_{env}$ is spontaneously sent to an alive object $u \in \mathcal{D}(\sigma)$, i.e.
 $$\sigma' = \sigma \cup \{u_E \mapsto \{v_i \mapsto d_i \mid 1 \leq i \leq n\}, \quad \varepsilon' = \varepsilon \oplus u_E$$
 where $u_E \notin \text{dom}(\sigma)$ and $\text{atr}(E) = \{v_1, \ldots, v_n\}$.

- Sending of the event is observed, i.e. $cons = \emptyset$, $Snd = \{(env, E(\vec{d}))\}$.

or

- Values of input attributes change freely in alive objects, i.e.
 $$\forall v \in V \forall u \in \text{dom}(\sigma) : \sigma'(u)(v) \neq \sigma(u)(v) \implies v \in V_{env}.$$
 and no objects appear or disappear, i.e. $\text{dom}(\sigma') = \text{dom}(\sigma)$.

- $\varepsilon' = \varepsilon$.
\[[x > 0]/x := x - 1; n! J \]

\[H/z := y/(x+1) \]

\[G[x > 0]/x := y \]

Example: Environment

\[
SM_C: \quad s_1 \xrightarrow{G[x > 0]/x := y} s_2 \xrightarrow{H/z := y/(x+1)}
\]

\[x = 0, z = 0, y = 2 \]
\[st = s_2 \]
\[stable = 1 \]

\[c : C \]

\[\sigma = \{ (signal, env) \} \]

\[\varepsilon' = \{ (signal) \} \]

\[\varepsilon' = \varepsilon \]

\[H \]

\[G, J \]

\[C \]

\[x, z : \text{Int} \]
\[y : \text{Int} \]
\[\langle \langle \text{env} \rangle \rangle \]

\[n \]

\[0, 1 \]

\[\sigma' = \sigma \cup \{ u_E \mapsto \{ v_i \mapsto d_i \mid 1 \leq i \leq n \} \} \]

\[u \in \text{dom}(\sigma) \]

\[\text{cons} = \emptyset, \ Snd = \{ (\text{env}, E(\overrightarrow{d})) \} \]

\[\text{atr}(E) = \{ v_1, \ldots, v_n \} \]
(v) Error Conditions

\[
S \xrightarrow{(\text{cons}, \text{Snd})_u} \# \quad \text{if, in (ii) or (iii),}
\]

- \(I[expr]\) is not defined for \(\sigma\), or
- \(t_{\text{act}}\) is not defined for \((\sigma, \varepsilon)\),

and

- consumption is observed according to (ii) or (iii), but \(Snd = \emptyset\).

Examples:

- \(E[x/0]/\text{act}\) from \(S_1\) to \(S_2\)
- \(E[\text{true}]/\text{act}\) from \(S_1\) to \(S_3\)
- \(E[expr]/x := x/0\) from \(S_1\) to \(S_2\)
Example: Error Condition

\[[x > 0] / x := x - 1; n ! J \]

\[\sigma: \]

\[
\begin{array}{l}
c : C \\
x = 0, z = 0, y = 27 \\
st = s_2 \\
stable = 1
\end{array}
\]

\[\varepsilon: \]

\[H \text{ for } c \]

- \(I[expr] \) not defined for \(\sigma \), or
- \(t_{act} \) is not defined for \((\sigma, \varepsilon) \)
- consumption according to (ii) or (iii)
- \(Snd = \emptyset \)
Notions of Steps: The Step

Note: we call one evolution \((\sigma, \varepsilon) \xrightarrow{(cons, Snd)} u \xrightarrow{} (\sigma', \varepsilon')\) a **step**.

Thus in our setting, a step **directly corresponds** to **one object** (namely \(u\)) takes a **single transition** between regular states. (We have to extend the concept of “single transition” for hierarchical state machines.) **That is:** We’re going for an interleaving semantics without true parallelism.

Remark: With only methods (later), the notion of step is not so clear. For example, consider

- \(c_1\) calls \(f()\) at \(c_2\), which calls \(g()\) at \(c_1\) which in turn calls \(h()\) for \(c_2\).
- Is the completion of \(h()\) a step?
- Or the completion of \(f()\)?
- Or doesn’t it play a role?

It does play a role, because **constraints/invariants** are typically (≡ by convention) assumed to be evaluated at step boundaries, and sometimes the convention is meant to admit (temporary) violation in between steps.
What is a run-to-completion step...?

- **Intuition**: a maximal sequence of steps, where the first step is a dispatch step and all later steps are commence steps.
- **Note**: one step corresponds to one transition in the state machine.

A run-to-completion step is in general not syntactically definable — one transition may be taken multiple times during an RTC-step.

Example:

\[E[x > 0]/ \]

\[/x := x - 1 \]

\[\sigma: \]

\[
\begin{array}{c}
:: C \\
\hline
x = 2
\end{array}
\]

\[\varepsilon: \]

\[E \text{ for } u \]
Proposal: Let

\[(\sigma_0, \varepsilon_0) \xrightarrow{(cons_0, Snd_0)} u_0 \xrightarrow{\ldots} (cons_{n-1}, Snd_{n-1}) \xrightarrow{u_{n-1}} (\sigma_n, \varepsilon_n), \quad n > 0,\]

be a finite (!), non-empty, maximal, consecutive sequence such that

- object \(u\) is alive in \(\sigma_0\),
- \(u_0 = u\) and \((cons_0, Snd_0)\) indicates dispatching to \(u\), i.e. \(cons = \{(u, \vec{v} \mapsto \vec{d})\}\),
- there are no receptions by \(u\) in between, i.e.

 \[cons_i \cap \{u\} \times Evs(\mathcal{E}, \mathcal{D}) = \emptyset, \quad i > 1,\]
- \(u_{n-1} = u\) and \(u\) is stable only in \(\sigma_0\) and \(\sigma_n\), i.e.

 \[\sigma_0(u)(stable) = \sigma_n(u)(stable) = 1 \quad \text{and} \quad \sigma_i(u)(stable) = 0 \quad \text{for} \quad 0 < i < n,\]

Let \(0 = k_1 < k_2 < \cdots < k_N = n\) be the maximal sequence of indices such that \(u_{k_i} = u\) for \(1 \leq i \leq N\). Then we call the sequence

\[(\sigma_0(u) =) \quad \sigma_{k_1}(u), \sigma_{k_2}(u) \ldots, \sigma_{k_N}(u) \quad (= \sigma_{n-1}(u))\]

a (!) **run-to-completion computation** of \(u\) (from (local) configuration \(\sigma_0(u)\)).
Divergence

We say, object \(u \) **can diverge** on reception \(cons \) from (local) configuration \(\sigma_0(u) \) if and only if there is an infinite, consecutive sequence

\[
(\sigma_0, \varepsilon_0) \xrightarrow{(cons_0, Snd_0)} (\sigma_1, \varepsilon_1) \xrightarrow{(cons_1, Snd_1)} \ldots
\]

such that \(u \) doesn’t become stable again.

- **Note**: disappearance of object not considered in the definitions.
 By the current definitions, it’s neither divergence nor an RTC-step.
Run-to-Completion Step: Discussion.

What people may dislike on our definition of RTC-step is that it takes a global and non-compositional view. That is:

- In the projection onto a single object we still see the effect of interaction with other objects.
- Adding classes (or even objects) may change the divergence behaviour of existing ones.
- Compositional would be: the behaviour of a set of objects is determined by the behaviour of each object “in isolation”.

Our semantics and notion of RTC-step doesn’t have this (often desired) property.

Can we give (syntactical) criteria such that any global run-to-completion step is an interleaving of local ones?

Maybe: Strict interfaces.

(Proof left as exercise...)

- **(A):** Refer to private features only via “self”.

 (Recall that other objects of the same class can modify private attributes.)

- **(B):** Let objects only communicate by events, i.e. don’t let them modify each other’s local state via links at all.
Putting It All Together
The Missing Piece: Initial States

Recall: a labelled transition system is \((S, \rightarrow, S_0)\). We have

- \(S\): system configurations \((\sigma, \varepsilon)\)
- \(\rightarrow\): labelled transition relation \((\sigma, \varepsilon) \xrightarrow{(\text{cons, Snd})} (\sigma', \varepsilon')\).

Wanted: initial states \(S_0\).

Proposal:

Require a (finite) set of **object diagrams** \(OD\) as part of a UML model

\((CD, SM, OD)\).

And set

\[S_0 = \{(\sigma, \varepsilon) \mid \sigma \in G^{-1}(OD), OD \in O\mathcal{D}, \varepsilon \text{ empty}\}. \]

Other Approach: (used by Rhapsody tool) multiplicity of classes.

We can read that as an abbreviation for an object diagram.
The **semantics** of the **UML model**

\[\mathcal{M} = (\mathcal{C}D, \mathcal{SM}, \mathcal{OD}) \]

where

- some classes in \(\mathcal{C}D \) are stereotyped as ‘signal’ (standard), some signals and attributes are stereotyped as ‘external’ (non-standard),
- there is a 1-to-1 relation between classes and state machines,
- \(\mathcal{OD} \) is a set of object diagrams over \(\mathcal{C}D \),

is the **transition system** \((S, \rightarrow, S_0)\) constructed on the previous slide.

The **computations of** \(\mathcal{M} \) are the computations of \((S, \rightarrow, S_0)\).
Let $\mathcal{M} = (\mathcal{C}D, \mathcal{S}M, \mathcal{O}D)$ be a UML model.

We call \mathcal{M} consistent iff, for each OCL constraint $expr \in Inv(\mathcal{C}D)$,

$$\sigma \models expr$$

for each “reasonable point” (σ, ε) of computations of \mathcal{M}.

(Cf. exercises and tutorial for discussion of “reasonable point”.)

Note: we could define $Inv(\mathcal{S}M)$ similar to $Inv(\mathcal{C}D)$.

Pragmatics:

- In **UML-as-blueprint mode**, if $\mathcal{S}M$ doesn’t exist yet, then $\mathcal{M} = (\mathcal{C}D, \emptyset, \mathcal{O}D)$ is typically asking the developer to provide $\mathcal{S}M$ such that $\mathcal{M}' = (\mathcal{C}D, \mathcal{S}M, \mathcal{O}D)$ is consistent.

 If the developer makes a mistake, then \mathcal{M}' is inconsistent.

- **Not common:** if $\mathcal{S}M$ is given, then constraints are also considered when choosing transitions in the RTC-algorithm. In other words: even in presence of mistakes, the $\mathcal{S}M$ never move to inconsistent configurations.
References
References

